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Multichannel Adaptive Enhancement of the 
Electrog astrogram 

Abstract-The electrogastric signal can be measured cutaneously on 
the abdomen. This is attractive because it is harmless to patients or 
volunteers. However, the poor quality of the cutaneous measurements 
necessitates signal enhancements. Hence, in this paper, an adaptive 
multichannel signal enhancing system is proposed. The p-vector least 
mean square (LMS) algorithm is applied to adjust the weights of the 
adaptive filters in the system. The detailed description and the perfor- 
mance analysis of the system is qiven in the paper. 

Applying the proposed system, the respiratory artifact, the elec- 
trode-skin noise, some of motion artifacts, and the electrocardiogra- 
phy (ECG) can be efficiently reduced while the characteristics of the 
relevant gastric signal is less affected. 

I. INTRODUCTION 
HE ELECTROGASTRlC signal can be measured cu- T taneously by attaching electrodes to the abdominal 

skin. The recorded cutaneous gastric signal is often called 
the electrogastrogram (EGG) [16]. Since the first mea- 
surements made in 1922 [ l ]  a great deal of research effort 
has been spent on the cutaneous EGG since it is nonin- 
vasive and harmless to patients or volunteers. Compared 
with other electrophysiological measurements, such as 
electrocardiography (ECG) and electroencephalography 
(EEG), however, the progress of the applicability of the 
methods has been very slow. One of the most important 
reasons is that the cutaneous EGG contains considerable 
noise. 

Signal processing techniques which have been applied 
to improve the quality of the EGG or to extract relevant 
information from the EGG include bandpass filtering [ 1 11, 
[14], [17], fast Fourier transform [ 3 ] ,  [20], [21], phase- 
lock filtering [ 151, autocorrelation [2], autoregressive 
modeling [13], and adaptive filtering [5]-[8], [12], [19]. 

This paper presents an adaptive method for the en- 
hancement of the gastric signal component in the EGG. 
It is structured as follows. In Section I1 we describe the 
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method of the measurement and the characteristics of the 
EGG. Section 111 introduces the principles of the adaptive 
signal enhancement. The adaptive system for the en- 
hancement of the human EGG is presented in Section IV. 
In Section V,  the performance of the proposed adaptive 
enhancing system on simulations is investigated. In Sec- 
tion VI, the performance of the system on EGG signals is 
discussed and one application is described. 

11. THE MEASUREMENT AND CHARACTERISTICS OF THE 
EGG 

Healthy volunteers, who fasted over night, are asked to 
lie on their back and to keep as still as possible. Ag/AgCl 
(red dot, 3M) electrodes (commonly used for the mea- 
surement of the ECG) are attached on the abdomen. Bi- 
polar signals are derived by connecting the electrodes in 
pairs. All bipolar signals are amplified by Universal Am- 
plifier 854 with cutoff frequency of 5 Hz (it should be 
mentioned here that the cutoff frequency could be set 
lower, but the lower cutoff frequency is not available in 
our recording equipment) and are stored on an analog tape 
by a tape recorder (TEAC). The recorded signals are then 
digitized by a 8 channel 12-bit AID converter with a sam- 
pling frequency of 12 Hz. Right after the A/D conversion 
a digital lowpass filter with cutoff frequency of 1 Hz (or  
0.5 Hz)  is applied and the signal is sampled again with a 
frequency of 2 Hz. 

Fig. 1 shows a bipolar cutaneous EGG measured from 
a normal fasted volunteer. The slow wave (its period 
equals to about 20 s )  is the gastric signal component, the 
spike-like activity is the ECG, and the superimposed si- 
nusoidal disturbance is the respiratory artifact. Fig. 2 is 
the power spectrum of the signal (512 s )  shown in Fig. 
1. The lowest frequency at about 0.05 Hz shows the gas- 
tric signal and the second peak from the left around 0.3 
Hz is caused by the respiratory artifact. The frequency of 
the ECG is not shown in this figure. It is about 1 Hz or 
higher. 

From these two figures we see that the EGG is a mix- 
ture of the gastric signal and of noise. Generally, noise 
consists of the respiratory artifact, the ECG, the noise re- 
sulting from electrode-skin interface [ 181, motion arti- 
facts, and other possible unknown noise. The frequencies 
of different components in the EGG are listed in Table I. 
The frequency of the gastric signal component is very low, 
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Fig. 1. Cutaneous EGG measurement. Slow wave; gastric signal; fast 

wave; respiratory artifact; spike activities: ECG. 
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Fig. 2.  Power spectrum (dB)  of the EGG (512 s data, low-pass filtered 
with cutoff frequency of 1 Hz). First peak (marked with an arrow) from 
left shows the gastric signal; second peak (marked with another arrow) 
from left shows the respiratory artifact. 

TABLE I 
COMPOSITIONS OF THE EGG SIGNAL 

Component Frequency ( H z )  

Interested component Gastric signal component 0.05 

Noise Respiratory disturbance 0.2-0.4 
Electrocardiography 0.8-1.0 
Electrode-skin noise less than 0.03 
Motion artifacts whole range 
Other possible noise unknown 

0.05 Hz or 3 cycles/min. However, the frequencies 
higher than 6 cycles/min and lower than 2 cycles/min 
have also been observed [9], [20]. 

The characteristics of the EGG are summarized as fol- 
lows. First, the gastric signal in the EGG at certain time 
is a weighted summation of all the internal electrogastric 
a c t i v e l f a t  that time. Its waveform is related to the po- 
sition iff the electrodes and to the activity of the stomach, 
such as the contraction of the stomach. Second, the fun- 
damental frequency of the gastric signal is about 0.05 Hz. 
Its waveform is not sinusoidal. This means that the gastric 
signal may have harmonics or some other higher fre- 
quency'cornponents. Fig. 3 shows a portion of a 2 h EGG 
measured from another volunteer, from which we can be 
convinced that the gastric signal is not sinusoidal. More- 
over in some situations, such as in the tachygastria case, 
the frequency of the EGG can be much higher. Fig. 4 
present the power spectra of a tachygastria EGG (512 s ) .  
We can see from this figure both the normal frequency 
(about 0.05 Hz) and the higher frequency (see peak at 
about 0.17 Hz).  Third, the EGG contains considerable 
noise. Some noise, such as motion artifacts, are within 
the frequency range of the gastric signal. Fourth, the am- 
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100 200 300 (second) 
Fig. 3. Nonsinusoidal cutaneous EGG measurement. The waveform of the 

EGG is not sinusoidal. This means the gastric signal has harmonics, i.e., 
higher frequency components other than the fundamental frequency ex- 
ist. 
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Fig. 4 .  Power spectrum (dB)  of an tachygastria EGG (512 s data low- 
pass filtered with cutoff frequency of 0.5 Hz). First peak (marked with 
an arrow) from left shows the normal gastric signal; Second peak (marked 
with another arrow) shows the higher frequency of the gastric signal. 

plitude and the frequency of the gastric signal component 
change from time to time according to our experience. 
Hence, the EGG is a nonstationary signal. Moreover, dif- 
ferent positions of the electrodes result in different wave- 
forms. 

Based on the characteristics of the EGG we propose in 
the following sections an adaptive signal enhancing sys- 
tem for the human EGG. It performs well in most situa- 
tions except in the case where the fundamental frequency 
of the gastric signal overlaps with that of the respiratory 
artifact. If this exceptional case occurs the adaptive sys- 
tem for the cancellation of the respiratory artifact pro- 
posed in [8] is especially suited. 

111. PRINCIPLES OF ADAPTIVE SIGNAL ENHANCING 
Fig. 5 shows a least mean square (LMS) adaptive signal 

enhancer [ 101. The primary input dj contains signal sOj and 
noise noj. They are assumed to be uncorrelated with each 
other. The reference input xj contains noise nlj  and signal 
slj related to sOj but not necessarily the same waveform as 
sOj. noj is assumed to be uncorrelated with either of sOj, 
n y  and sY. 

The output y j  of the adaptive filter is expressed as 
N 

and the residual error between the filter output and the 
primary input can be written as 

(2) e. = d .  - y 
J J I '  

The weight vector of the adaptive filter at t ime j  + 1 is 
adapted according to the LMS algorithm [22] as follows: 

Wj+ , = Wj + 2pej4 ( 3 )  
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d, = SO, + no, 

Fig. 5. LMS adaptive signal enhancer. Among so,, no,, s,,, n,,, only s,, and 
so, are correlated with each other. 

with 

where x, is the reference signal at time instant j ,  Wk] ( k  = 

1 ,  2, * , N )  are the kth coefficients of the adaptive 
filter at time j ,  N is the length of the adaptive filter and p 
is a constant called feedback factor which determines the 
convergence speed of the adaptation. 

After the convergence of the adaptive filter the mean 
squared value of the error signal el is minimal and the 
output of the adaptive filter, yJ is a best estimate of the 
signal soJ in the primary input in the sense of the mean 
square error. As shown in the adaptive filter literature 
[lo], the filter output is a best estimate of signal so in the 
sense of mean square error. More generally, the adaptive 
jilter generates a replica of that part of the primary input 
which is correlated with the reference input (or input to 
the adaptivejilter). This conclusion is a key to understand 
the adaptive signal enhancing system to be proposed in 
the next sections. 

The adaptive signal enhancing system shown in Fig. 5 
can be called a two-channel adaptive signal enhancer, and 
a multichannel adaptive signal enhancing system is shown 
in Fig. 6 (time index j is omitted for simplicity). The 
primary input dl contains a desired signal so and noise no. 
Every reference input consists of a signal sk correlated to 
so and noise nk uncorrelated to either of so and no. The 
signals sk ( k  = 1, m )  in the reference inputs need not have 
the same waveform as the signal so in the primary input. 
As explained in previous paragraph the output of the sys- 
tem, y is a best estimate of so in the primary input. 

It has been proved by Ferrara and Widrow [lo] that the 
more reference inputs are available which contain cor- 
related signal components, the better the system perfor- 
mance will be. 

If the reference input xJ in Fig. 5(a) is derived from the 
primary input dl by only inserting a delay A, the system 
is called an adaptive line enhancer (ALE) (see Fig. 7). 
Assume the input to the ALE consists of a correlated sig- 
nal sJ,  such as periodic signal, and uncorrelated noise nJ. 
The only difference between the primary and the reference 
inputs is the delay A .  If the delay is chosen such that the 
noise nl - A  in the reference input becomes uncorrelated 
with nl in the primary input, then the output of the adap- 
tive contains signal s, alone after the convergence of the 

d = SO + no 
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Fig. 6 .  Multichannel adaptive signal enhancer. Primary input: so + no, so 
is the signal to be extracted; reference inputs: s, + n,, . . . , s, + n,n. 
AF: adaptive filter. Time indexj  is omitted. 
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Fig. 7. Adaptive line enhancer. AF: adaptive filter, z -': A samples delay. 
A is used to decorrelate noise, n, (if not periodic) in the primary input. 

adaptive algorithm. It can be explained as follows. Under 
the above assumptions there is an M such that (7) holds. 

dJ = sl + nJ 

x I = s ] - A  + n J P A  

E I S J S J - k l  ' for any k ( 6 )  

(7)  E[nJn,-k] = 0 for k 2 M .  

Choosing the delay equal (or larger) to M ,  A 1 M we can 
see that the noise, nl - a in the reference input is uncorre- 
lated with nJ in the primary input [see (7)], while the sig- 
nal sJPA is still correlated with sl in the primary input [see 
(6)]. Consequently, the filter output yJ is a replica of sI 
according to the observation made earlier. 

IV. ADAPTIVE ENHANCEMENT OF THE HUMAN EGG 
Having discussed both the characteristics of the human 

EGG and the adaptive signal enhancing technique, we 
propose an adaptive signal enhancing system for the EGG 
in this section. The system is shown in Fig. 8. It is com- 
posed of two stages: a preprocessing and a modified multi- 
channel adaptive signal enhancing. 

A. Preprocessing 
In the second section we indicated that the EGG is a 

nonstationary signal and the SNR is low. So when the 
LMS algorithm is used the convergence speed should be 
fast enough to track the time variations of the EGG sta- 
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Fig. 9. Power spectra (dB)  of the EGG before and after the preprocessing 
(512 s data). Normal line: input power spectrum; dotted line: power 
spectrum of the preprocessing output. Frequency components around 
0.05 Hz reflect the gastric signal. It is little affected by the preprocess- 
ing. The level of noise is substantially reduced. 

tistics. That is, the value of feedback factor should be 
larger; however, a larger p will result in a larger contri- 
bution of gradient noise [ 2 3 ] .  In order to keep the gradient 
noise within a tolerable limit when the fast adaptation is 
needed, an alternative way is to reduce the noise compo- 
nents in the input signal. For this reason the preprocessing 
is introduced [4]. 

The preprocessing (dashed part in Fig. 8) is simply an 
adaptive line enhancer. The input signal to the prepro- 
cessing is the EGG to be enhanced and the reference input 
is its delayed version. Properly choosing the length of the 
adaptive filter, feedback factor p and the delay ZD1, the 
output of the preprocessing yo, after the convergence of 
the adaptive filter, contains little uncorrelated noise. The 
gastric signal is, however, not affected because it is highly 
correlated. The SNR of the primary signal is then consid- 
erably increased after the preprocessing, which relieves 
the “burden” of the next stage processing. 

Fig. 9 shows the power spectra of an EGG (512 s )  be- 
fore and after the preprocessing. Line l is the power spec- 
trum of the signal before the preprocessing and line 2 
(dashed line), after the preprocessing. From the figure we 
can see that the gastric signal component around 0.05 Hz 
is little affected. The power of the noise with frequency 
greater than 0.1 Hz is, however, reduced by 30 dB or 
more. 

B. ModiJied Multichannel Adaptive Enhancing 

The remainder of the system shown in Fig. 8 is the 
modified multichannel adaptive enhancing. Its primary 
input, yo is the output of the preprocessing and the refer- 
ence inputs EGGI-EGG,,, are different positional EGG. All 
of the reference inputs are first filtered by an FIR digital 
low-pass filter in order to eliminate the periodic respira- 
tory artifact which is correlated with that in the primary 
input yo. The delay 1 0 2  is inserted in the primary input 
to compensate the time delay introduced by the FIR filters 
in the reference inputs. 

“LP” in Fig. 8 is a low-pass FIR filter with cutoff fre- 

quency of 0.2 Hz. It should be higher than the fundamen- 
tal frequency of the gastric signal. It may distort the wav- 
eform of the gastric signals in the input signals EGG, to 
EGG,. But it has linear phase character so the phase char- 
acter of the gastric signal component is not affected except 
the time delay. The adaptive filter (AF) in Fig. 8 is real- 
ized by the tapped delay line shown in Fig. 5(b). The 
tapping space time is one sample, that is, 0.5 s and the 
number of weights will be discussed later. The gastric sig- 
nals in different positional EGG may have different wave- 
form, different amplitudes, and different phases. How- 
ever, they must have the same time-varying characters, 
such as the variations of the frequency and of the ampli- 
tude from time to time, because they all originated from 
the stomach. 

Assume that the primary input EGGo contains a gastric 
signal, uncorrelated noise, and correlated noise (mainly 
the respiratory artifact). After the preprocessing at point 
A in the primary input we have the gastric signal and some 
correlated noise (mainly respiratory artifact). After low- 
pass filtering at points B, ,  B2, * . . , B, we have the gas- 
tric signals related to that in the primary input and little 
noise mostly uncorrelated with that in yo. Properly choos- 
ing the parameters of the system, the output y is then, 
after convergence, a best estimate of the gastric signal 
component in the primary input. 

Recall that the adaptive filter generates a replica of that 
part of the primary input which is correlated with the ref- 
erence input to the adaptive filter. From the proposed sys- 
tem the following conclusions can be made: 

The system output y is a best estimate of the gastric 
signal component in the primary input. The respiratory 
artifact, the ECG, the electrode-skin noise and some of 
the motion artifacts can be eficiently reduced by the pro- 
posed system. 

Although the respiratory artifact and the ECG are cor- 
related signals, they can not be extracted from the primary 
input by the adaptive filters since they don’t appear at the 
points B,,  * , B,. 
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The electrode-skin noise can be eliminated if no com- 
mon reference electrode is used since this class of the 
noise in one EGG is uncorrelated with that in another 
EGG. 

The motion artifacts are not periodic and thus some of 
these can be reduced by the preprocessing if the delay ID1 
is properly chosen. Some which are uncorrelated in dif- 
ferent EGG can also be reduced. The complete reduction 
of the motion artifacts is, however, not guaranteed by the 
proposed system. 

C.  System Parameters 
Several parameters need to be determined in the system 

shown in Fig. 8.  They are feedback factor p, the length 
of the adaptive filter and the delay units, I01  and 1 0 2 .  
The most crucial parameter is the feedback factor p. The 
necessary and sufficient condition for the convergence of 
the LMS algorithm is as follows [22]: 

l / a 2  > p > 0 ( 8 )  

where U *  is the total input power to the adaptive filter. 
Since the EGG is a nonstationary signal, the p,-vector 

LMS algorithm proposed in [4] is used for all of the adap- 
tive filters in the system. It is described as follows: 

white noise it can be set to be 1. For the EGG application 
we have found that if the motion artifacts are not strong 
the change of its value within a certain range does not 
affect the system performance. It is usually chosen to be 
1. The delay 1 0 2  is inserted to compensate the delay in- 
troduced by the FIR filters. 

V. PERFORMANCE ANALYSIS BASED ON SIMULATIONS 
To investigate the performance of the proposed system 

quantitatively, simulations have been conducted based on 
the following experiments. 

The input signals to the system shown in Fig. 8 (only 
two channels are considered) are generated as 

EGG, = si + brj + cnj (14) 

EGGlj = slj + b r ,  + cnlj 

where rj and r l j  are simulated respiratory artifacts. They 
are sinusoids with a frequency of 0.3 Hz. nj and nl, are 
uniformly distributed (-0.5, 0.5) random noise. si and 
slj are simulated gastric signals in the primary input and 
in the reference input, respectively. They are nonstation- 
ary- 

s, is a sequence of sinus signals 

si = fi sin ( 2 n f f j )  ( 1 6 )  

W,,, = W, + 2cjejX,  each considered over one full period. The amplitude 6 and 
the frequency f f  of each sinusoid vary as follows: (9 )  

p.. = ( 1  - 
‘J CY)i-‘q; 

fi = a ( 1  + d o n r )  

f = f , ( l  + df”) 
4; = LL/(aj2 + a;) 

U; = ( 1  - p)u : - l  + pxf 

( 1 2 )  

( 1 3 )  

where n r  is a white noise, having the same nature as nj 
and nlj .  Parameters a ,  6 ,  and c in (18), (19), and (22) are 
constants controlling the SNR of the simulated signals. d, 

where CY is a nonstationary factor (or forgetting factor) 
less than 1 .  Observe that a should be determined accord- 
ing to the variation degree of the input statistics; for sta- 
tionary input CY could be chosen to be zero. q, is the nor- 
malized feedback factor which is given to the most recent 
tap. p is the factor controlling the convergence of the al- 
gorithm. U,? is an estimate of the total input energy to the 
adaptive filter. U: is a small constant used to prevent p i j  
from getting too large when the input signal gets very 
small. is a small constant less than 1 ,  generally equal 
to 1/N. 

In general faster adaptation (large value of p )  leads to 
more noisy adaptation processes. When the input envi- 
ronment is statistically stationary the best steady-state 
performance results from slow adaptation. In the EGG ap- 
plication, however, the input statistics is time-varying. 
Hence a fast adaptation is needed in order to follow the 
time variations of the signals. 

The length of the tapped delay line, namely the number 
of adaptive weights, should be at least the reciprocal of 
the desired filter resolution [22].  Since the normal period 
of the gastric signal is 20 s (40 samples), this value is 
usually chosen to be 60 in the experiments. The delay ID1 
is used to decorrelate the noise in the primary input. For 

and df are nonstationary factors determining the variation 
degree of the frequency and of the amplitude of the gastric 
signal, respectively. When they are equal to zero, the gas- 
tric signal sj turns out to be a sinusoid. 

slj has different variations from sj, but its frequency fol- 
lows the same changes as si. It is also a sequence of sinus 
signals 

slj = sin (..J”sj) (19) 
but each considered over half a period. 

Fig. 10(a) and (b) show the simulated gastric signals si 
and sv, respectively. The simulated primary input EGGo 
is shown in Fig. 1O(c) (SNR = -7 .8 dB). 

To give some quantitative measures on the performance 
of the proposed adaptive system, we define terms, “mean 
square error” ( MSEj) and “misadjustment” (M ) as fol- 
lows: 

MSE, = E [ ( s ;  - y j )  2 ] 

K t L  

c s; 
J = K  
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2 0  s 
Fig. 10. Simulated nonstationary signals. (a) Simulated gastric signal in 

the primary input; (b) simulated gastric signal in the reference input. 
They have different waveform, but follow the same changes of the fre- 
quency. (c) Simulated primary input (SNR = -7 .8) .  

where sj is the gastric signal in the primary input EGGo 
and yj  is the system output. The misadjustment M is an 
averaged relative square error in the steady state. K should 
be large enough such that after K adaptations, the system 
has already converged. 

In the following experiments, the parameters are cho- 
sen as follows (if not specially mentioned): 

Sample frequency: 2 Hz; length of the adaptive filters 
N = 60; order of the FIR low-pass filters: 50; cutoff fre- 
quency of the FIR low-pass filter: 0.2 Hz; 

fs = 0.05 Hz, fr(frequency of respiration) = 0.3, 

ID1 = 1, ID2 = 25, d, = d,, = 0.5, 

SNR = -7.8, p = 0.04, CY = 0.04. 

A.  Convergence of the System 
Fig. 11 shows the convergence of the system with the 

stationary inputs ( d ,  = df = 0), the mean square error, 
MSEj versus the number of the adaptations over 100 in- 
dependent runs. The feedback factor p is chosen to be 
0.04 for curve 1 and 0.1 for curve 2. From these two 
curves we can see that for the stationary inputs, larger p 
results in faster convergence and larger mean square error 
in the steady state. Smaller p ,  on the other hand, results 
in slower convergence and better performance. 

For nonstationary inputs, however, this is not always 
the case since the system has to follow the changes of the 
input signals. Smaller p may result in worse performance, 
as shown in Table 11, where d, = df = 0.5. The first row 
on the table shows different values of p and the second, 
the misadjustment, M in the steady state. It can be ob- 
served that for the nonstationary inputs smaller p does not 
lead to better performance. The optimum value of p for 
the simulated nonstationary inputs with d, = df = 0.5 is 
0.1-0.2. 

B. Optimization of the p-Vector LMS Algorithm 
Table 111 shows the performance of the system with dif- 

ferent values of CY ( d ,  = d,, = 0.5 ). It can be seen in the 
table that for d, = df = 0.5, the optimum value of CY is 
equal to 0.6, which leads to a minimum misadjustment. 
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Fig. 1 1 .  Convergence of the adaptive system (mean square error versus 
adaptation number over 100 independent runs). do = d,, = 0.5, SNR = 
-7.8; CY = 0.0; curve 1 :  p = 0.04; curve 2: p = 0.1. 

TABLE I1 
EFFECT OF p ON THE SYSTEM PERFORMANCE WITH NONSTATIONARY INPUTS 

( d o  = d, = 0.5, CY = 0.04, SNR = -7.8 dB) 

feedback factor, p 0.005 0.01 0.02 0.04 0.1 0.2 
Misadjustment, M 0.630 0.473 0.417 0.398 0.357 0.358 

TABLE I11 
EFFECT OF (Y ON THE SYSTEM PERFORMANCE ( d ,  = d, = 0.5, p = 0.2 SNR 

= - 7 . 8 d B )  

Nonstationary factor, CY 0.8 0.6 0.4 0.4 0.0 
Misadjustment, M 0.359 0.343 0.357 0.462 0.788 

Fig. 12 shows the performance of the system with dif- 
ferent CY in the frequency domain. Curve 1 is the power 
spectrum of the primary input (512 s data). Curve 2 and 
3 are the system outputs with CY = 0 and CY = 0.04, re- 
spectively. From this figure we can see that the power of 
the simulated gastric signal is little affected by the system: 
2.5 dB reduction for the maximum value with CY = 0; 3.5 
dB with CY = 0.04. The power of the respiratory artifact 
and the white noise is substantially reduced: 44 dB reduc- 
tion of the maximum power of the respiratory artifact with 
CY = 0 and 59 dB reduction with CY = 0.04. The noise 
level is reduced by about 55 dB. We can also observe that 
better performance ( 15 dB more reduction of the respi- 
ratory artifact) is achieved by the p-vector LMS algo- 
rithm. 

C. Effect of the SNR 
Experiments with different SNR of the primary input 

have been conducted and the results are shown in Table 
IV. It can be seen that as the SNR of the input signal 
increases the misadjustment gets smaller and smaller, i.e., 
better performance can be obtained with higher SNR. 

D. Nonstationary Effect 
We have shown in Fig. 11 and that with stationary in- 

puts better performance can always be achieved by choos- 
ing smaller p .  With nonstationary inputs this is not always 
true. Optimum values of CY can be found for different non- 
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TABLE IV TABLE V 
EFFECT OF SNR OF T H E  PRIMARY INPUT ON THE SYSTEM PERFORMANCE (do EFFECT OF TIME VARIATIONS OF THE FREQUENCY AND THE AMPLITUDE OF 

= d, = 0.5, p = 0.04. alpha = 0.04) THE SIGNAL ON THE SYSTEM PERFORMANCE ( fi = 0.04, a = 0.04, 
SNR = -7.8 dB) 

Signal-to-noise Ratio, -16 .7  -7.8 -1 .2  10.8 17.8 
SNR (dB ) Time variation degree, do, d, 0.7 0.5 0.3 0.2 0.1 0.0 

Misadjuatment, M 0.708 0.398 0.157 0.149 0.148 Misadjustment, M 0.488 0.398 0.319 0.398 0.414 0 . 2  

stationary signals. To see this several experiments have 
been done. In Table V we fix the value of (Y ( =  0.04), 
but vary the parameters d, and df. From the table we can 
see that (Y = 0.04 is more suitable ford, = df = 0.3 than 
for others. When the deviations of the frequency and of 
the amplitude of the signal are further away from 0.3, the 
performance of the system with a = 0.04 becomes worse. 
The last column in the table means that the input signals 
are stationary and thus the best performance is obtained. 

E. Effect of the Preprocessing 
Fig. 9 has already shown the performance of the pre- 

processing. It is known that some uncorrelated noise (not 
necessarily white noise as in the simulations) can be re- 
duced by the preprocessing. Fig. 13 presents the improve- 
ment achieved by the preprocessing for the simulated sig- 
nals. Curve 1 is the power spectrum (512 s data) of the 
system output without the preprocessing and curve 2 is 
that with the preprocessing. From the figure it is clear that 
the power of the simulated gastric signal and the simu- 
lated respiratory artifact is not affected by the pre-pro- 
cessing but more white noise reduction is obtained by the 
preprocessing. 

It should be noted that in most of the above experiments 
worst case conditions were simulated: very low SNR 

POWER SPECTRR COB3 
IiORMRL L I N E  OUTPUT UJITHOUT PRE-PROCESSING 
L I N €  W I T H  STRR DUTPUT W I T H  PRE-PROCESSING 

-20 0 

POWER SPECTRR COB3 
IiORMRL L I N E  OUTPUT UJITHOUT PRE-PROCESSING 
L I N €  W I T H  STRR DUTPUT W I T H  PRE-PROCESSING 

I i \  I 

-80 0 L . , , . ,~ , 
0 00 0 20 0 40 0 60 0 80 

Fig. 13. Power spectra (dB)  of the system outputs with and without the 
preprocessing (512 s data). Curve 1: the output without the preprocess- 
ing; curve 2: the output with the preprocessing. 

( -7.8 dB); big changes of the frequency and the ampli- 
tude of the gastric signal (50% deviations); bad reference 
signal (the waveform of the gastric signal, si] in the ref- 
erence input is completely different from that, sj, in the 
primary input ). 

In reality, however, the SNR is normally higher than 
- 7.8 dB, the time variations of the gastric signal may not 
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Fig. 14. Power spectra (dB) of the primary input and the system output 
L 

20 I -~ - 
(512 s data) under following conditions: do = d, = 0.0, p = 0.01, SNR 

that with the stationary inputs the noise (obviously for the respiratory 
artifact) can be completely eliminated. 

= - 1 , I ,  curve 1: input; curve 2: system output. It can be Seen Fig. 16. Adaptive enhanced result of the human EGG (512 s data). (a) 
The Primary input (EGG,); (b)-(d) the reference inputs (EGGI-EGG3); 
(e) system output with EGG, as the reference; ( f )  system output using 
all the reference EGG signals. 

CHI 

CH2 
Fig. 15. Waveform of the gastric signal in the primary input and the sys- 

tem output under the same conditions as those in Fig. 14. Little wave- 
form distortion of the gastric signal can be observed. CH3 

be so fast and the waveform of the gastric signals in dif- 
ferent EGG recordings are more similar with each other 
than in the above simulations. 

Assuming better conditions, d, = df = 0 ,  SNR = - 1.1, 
and choosing a smaller p ( = 0.01 ), we have conducted 
one more experiment. The results are shown in Figs. 14 
and 15. Fig. 14 shows the power spectra of the primary 
input ( curve 1 ) and the system output (curve 2 ). It is seen 
that the gastric signal is hardly affected while the respi- 
ratory artifact and the white noise are significantly re- 
duced. In Fig. 15 we present the original gastric signal in 
the primary input and the system output in time domain, 
from which we can see that the waveform of the gastric 
signal is little affected. 

VI. PERFORMANCE ON EGG SIGNALS 
The proposed adaptive signal enhancing system has 

been successfully used for real cutaneous gastric signal 
processing. Our experiments with more than 15 measure- 
ments (each more than 1 h )  have shown that the system 
is efficient and is simple to use or to implement. 

With sampling frequency of 2 Hz, following suitable 
values have been found: the length of the adaptive filter, 
N = 50-60; the feedback factor, p = 0.06; and the non- 
stationary factor, a = 0.04. 

Fig. 16 shows one of the results. Fig. 16(a)-(d) show 
four different positional EGG’s and Fig. 16(e) and (f) are 
the adaptive enhancing outputs of the signal EGGo. In Fig. 
16(e) only EGGl is used as the reference input and in Fig. 
16(f), three reference inputs EGG,, EGG2, and EGG3 are 
used. The improvement of the system output quality by 

CH4 

Fig. 17. Four-channel EGG signals measured on the abdomen along the 
vertical axis of the stomach (low-pass filtered with cutoff frequency of 
0 .5  Hz). 

using more reference inputs can be seen by comparing 
Fig. 16(e) and (f). 

Applying the adaptive system in this paper, the SNR of 
EGG signals can significantly be improved. This makes 
the direct waveform analysis of the EGG easier, and more 
information can be extracted from the EGG, such as the 
changes of the frequency and of the amplitude of the gas- 
tric signal, the different patterns of the EGG waveform 
associated to different subjects (if there are any) and so 
on. 

In order to illustrate the applicability of the method, we 
apply the method on the detection of the propagation of 
the gastric activity from the EGG [9]. Fig. 17 shows four 
channel EGG recorded from a patient by locating four 
electrodes on the abdomen along the vertical axis of the 
stomach. Each of these is connected to a common refer- 
encing electrode also attached on the abdominal skin. The 
EGG shown in Fig. 17 have been lowpass filtered with 
cutoff frequency of 0.5 Hz. Fig. 18 shows the adaptively 
enhanced outputs by using the system in this paper. From 
this figure phase shifts among the different channels can 
be clearly observed. A method for the precise calculation 
of the phase shifts among the EGG’s can be found in [9]. 

VII. CONCLUSION 
In this paper we described the measurement of the EGG 

and analyzed the characteristics of the EGG. Based on 
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Fig. 18. A portion of the adaptive enhanced EGG signals of those shown 
in  Fig. 17. Phase shifts among the EGG signals can be clearly observed. 

this an adaptive signal enhancing system is proposed for 
the human EGG. 

The performance of the proposed system has been thor- 
oughly investigated. It has been shown that the system 
can substantially reduce the respiratory artifact, the ECG, 
the noise resulting from electrode-skin interface and some 
motion artifacts. The gastric signal component in the EGG 
is, however little affected by the system. Consequently, 
the signal-to-noise ratio of the EGG can be significantly 
improved. 
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