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Abstract--The electrogastrogram (EGG) is an abdominal surface measurement of gastric 
myo-electrical activity which regulates gastric contractions. It is of great clinical importance 
to record and analyse multichannel EGGs, which provide more information on the 
propagation and co-ordination of gastric contractions. EGGs are, however, contaminated 
by myo-electric interference from other organs and artefacts such as motion and respira- 
tion. The aim of the study is to separate the gastric signal from noisy multichannel EGGs 
without any information on the interference, using independent component analysis. A 
neural-network model is proposed, and corresponding unsupervised learning algorithms 
are developed to achieve the separation. The performance of the proposed method is 
investigated using artificial data simulating real EGG signals. Experimental EGG data are 
obtained from humans and dogs. The processed results of both simulated and real EGG 
data show the following: first, the proposed method is able to separate normal gastric slow 
waves from respiratory artefacts and random noises. It is also able to extract gastric slow 
waves, even when the EGG is contaminated by severe respiratory and ECG artefacts. 
Secondly, when the stomach contains various gastric electric signals with different 
frequencies, the proposed method is able to separate these different signals, as illustrated 
by simulations. These data suggest that the proposed method can be used to separate 
gastric slow waves, respiratory and motion artefacts, and intestinal myo-electric inter- 
ference that are mixed in the EGG. It can also be used to detect gastric slow-wave 
uncoupfing, during which the stomach has multiple gastric signals with different frequen- 
cies. It is believed that the proposed method may also be applicable to other biomedical 
signals. 
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1 Introduction 

SINCE ALVAREZ'S creative work (1922), it has been exten- 
sively reported that, just as in the heart, there exists an 
electrophysiological process in the smooth muscle of the 
stomach, which is known as gastric myo-electric activity 
(GMA) and can be recorded in v ivo  with electrodes implanted 
in the serosa of  the stomach. It is known that the function of 
GMA is to modulate the motility of the stomach (SARNA, 
1975; CHEN and MCCALLUM, 1994). 

GMA consists mainly of two components. One is electrical 
control activity (ECA), or basic electrical rhythm (BER), 
which is an omnipresent slow wave with a frequency of 3 
cycles min -Z in healthy humans. The other is electrical 
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response activity (ERA), which is the spike cluster or fast 
wave superimposed on the ECA (SARNA, 1975). The former 
reflects the maximum frequency of the contractions of the 
stomach, and the latter is associated with the appearance of 
contractions (SARNA, 1975; FAMILONI et  al., 1987; KOCH 
et  al., 1987; CHEN and MCCALLUM, 1993). 

GMA can be cutaneously measured by placing surface 
electrodes on the abdomen over the stomach; this method is 
termed electrogastrography, and the surface signal obtained is 
called an electrogastrogram (EGG) (ALVAREZ, 1922; SMOUT 
et  al., 1980; FAMILONI et  al., 1987; KOCH et  al., 1987; ABEL 
and MALAGELADA, 1988; CHEN and MCCALLUM, 1993; 1994; 
MINTCHEV et  aL, 1993). Owing to its non-invasive nature and 
capacity to reflect the major features of internal GMA, 
electrogastrography has become an attractive tool for physio- 
logical and pathophysiological studies of the stomach (SMOUT 
et al., 1980; FAMILONI et  al.,  1987; KOCH et al., 1987; CHEN 
and MCCALLUM, 1993; 1994). The clinical significance of the 
EGG has been validated. For instance, it has been reported that 
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the EGG has a close relationship with gastric motor disorders 
and gastro-intestinal symptoms, such as nausea, vomiting and 
gastroparesis resulting from delayed gastric emptying 
(FAMILONI et al., 1987; CHEN and MCCALLUM, 1993; 1994; 
CHEN et al., 1996). 

EGG is now on the verge of  becoming a new clinical tool in 
gastro-enterology, but is not yet in extensive clinical use, 
unlike electrocardiograms (ECGs) (SMOUT et  al., 1980; CHEN 
and MCCALLUM, 1993; 1994; MINTCHEV et al., 1993). One of  
the problems is that the EGG is weak in energy, very low 
frequency, sometimes of  poor quality and vulnerable to 
various kinds of  artefact, such as respiration and motion, 
especially compared with other electrophysiological signals, 
such as ECGs and EMGs (MINTCHEV et al., 1993; LIANG 
et al., 1997). Thus, a way to obtain higher-quality EGG 
data is an objective sought by researchers in the method- 
ology field related to electrogastrography. 

Instruments for measuring the EGG are equipped with low- 
pass filters to eliminate various kinds of  interference from the 
measurement environment. However, the frequencies of some 
types of  interference, such as motion artefacts and other noise, 
often overlap with that of  the EGG, and thus lowpass filtering 
is not sufficient to eliminate all artefacts or random noise. 
Another possible way to improve EGG quality is the use of  
adaptive noise cancellation (ANC) technology, based on 
adaptive signal processing theory (VAN DER SCHEE et al., 
1981; CHEN et al., 1989), by which noise is removed from the 
EGG through a subtraction and optimisation process. How- 
ever, ANC requires a reference signal that is the comprehen- 
sive signal of the various artefacts to be removed. Obviously, 
it is difficult and sometimes unrealistic to obtain such a 
reference signal in practical applications, because artefacts 
are variable, and their distribution natures are unknown. 
Recently, a novel method to detect motion artefacts in the 
EGG was reported (LIANG et al., 1997), using feature analysis 
and neural networks to detect and eliminate the motion 
artefacts. In this method, however, the contaminated signal 
segment is also deleted, together with the identified motion 
artefacts. 

A new method for the measurement of multichannel EGG 
data using an electrode array was recently developed (ZHOU 
et al., 1997). Obviously, such measurement has excellent 
potential for improving the quality of  the EGG, and such 
multichannel data can provide us withmore information on 
the internal GMA than the single-channel EGG. Owing to 
the mixing effects resulting from the transferring media and 
various kinds of  artefact, however, these multichannel 
recordings are statistically correlated with one another. The 
question is how effectively to extract valuable information 
from such multichannel EGG or, at least, how to make best 
use of  these multichannel recordings to extract or separate 
out cleaner s!gnals that reflect the internal GMA more 
accurately. 

The aim of  this paper is to answer these questions. First of  
all, we will make clear the problem we are facing. As no one 
has a good way to obtain clean or 'original' GMA data from 
the abdominal surface, such an hypothesis is tenable, i.e. 
practical multichannel EGG signals are some kinds of  mixture 
resulting from the true transferred GMA components and 
various kinds of  noise or artefacts. However, there are ques- 
tions as to what the 'true' components are and whether we can 
make it clear how they are mixed. The answer is probably 
'no'.  That is, the extraction of  valuable or 'true' information 
from cutaneously recorded multichannet EGGs is a blind 
problem. Fortunately, a novel signal processing technology, 
blind signal processing, and especially blind source separation 
(BSS), has recently been developed (JUTTERN and HERAULT, 
1991; SOROUCHYARI, 1991; BUREL, 1992; COMON, 1994; 

HYVARINEN, 1996), its application to biomedical signal ana- 
lysis has been reported (MAKEIG and BELL, 1997), and it can 
be used to solve our problem. 

In this paper, a blind separation method for multichannel 
EGGs using neural network-based independent component 
analysis (ICA) is presented. ICA is an effective technology 
for BSS, by which both first-order and second-order correla- 
tions among given multichannel signals can be removed and, 
when the source signals are statistically independent, they can 
be recovered from their linearly mixed versions. We proposed 
a neural network and a corresponding unsupervised learning 
algorithm for the implementation of  the ICA. The experimen- 
tal results showed that using this technology, the cleaner 
components can be separated from the multichannel EGG 
data contaminated by measurement artefacts, such as respira- 
tory, motion and ECG, without any prior information on such 
contamination. The method can also be applied to other 
biomedical signals, such as ECG, EEG and EMG. 

2 Methods 

2.1 Problem formulations 

ICA is a recently developed technology that expresses a set 
of  random variables as linear combinations of  statistically 
independent component variables (JUTTERN and HERAULT, 
1991; SOROUCHYARI, 1991; BUREL, 1992; COMON, 1994; 
HYVARINEN, 1996). The promising applications of  ICA are 
in blind source separation, feature extraction and blind decon- 
volution and so on. In the framework of ICA introduced by 
COMON (1994), we observe m signals vl(t) ,vz(t  ) . . . . .  Vm(t); 
for example, we measure m EGG signals using m channels, 
and these m signals are linear combinations of  n unknown 
(blind) components sl(t), s2(t ) . . . . .  s,(t), which are assumed 
mutually statistically independent, i.e. their joint probability 
distribution function can be decomposed as 

p(s) = N pi(si) (l) 
i= I 

where pi(si)  is the probability density function (PDF) of  the ith 
source signal, for example, one true EGG component and n-1 
interference components. Such a linear relationship can be 
compactly represented as 

v(t) = ~ aisi(t  ) = As(t) (2) 
i 

where v(t) = (vl(t), v2(t ) . . . . .  vm(t)~ r is the observation 
vector; s(t) (st(t),s2(t) . . . . .  s,(t))" is the source vector; 
and A is an unknown (blind) m x n non-singular matrix not 
depending on time t, called the mixing matrix. The basic 
problem of ICA is to estimate the true source s(t) from the 
mixed observation vector v(t), or, say, to estimate the inverse 
of  the mixing matrix A. If  we obtain a good estimator.4 ofA -l  
only based on the observation vector v(t), the source signals 
can be recovered by 

~(t) = ~tv(t) 

2.2 Data pre-processing and whitening 

Now that A and s(t) are blind, we need to do some preliminary 
work on the only data v(t), so that the blind separation task 
becomes easier. The preliminary work usually includes 
removing mean and whitening. The data whitening can be 
implemented by linearly transforming v(t) into x(t), i.e. 

x(t) = Uv(t) (3) 
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such that the correlation matrix of  x( t )  becomes unit matrix 
E{x( t )x ( t )  r} = 1 (E{.} denotes the mathematics expectation of  
a random variable), which can be accomplished by classical 
principal component analysis (PCA). After whitening, we 
obtain 

x( t )  ~- Bs ( t )  (4) 

where B = UA is an orthogonal matrix, because E{x( t ) x ( t )  r} 
= B E { s ( t ) s ( t ) r } B  r = B B  r = I ,  where E{s( t )s( t )  r} = I ,  as we 
have assumed that s(t)  is statistically independent and has a 
zero mean. Now we have reduced the problem of  finding an 
arbitrary matrix A to a simpler problem of  finding an ortho- 
gonal matrix B. Once B is found, s(t)  can be computed by 

s(t)  = B r x ( t )  = B r  Uv( t )  (5) 

Eq. (5) is the key to solving the BSS problem, in which only 
the vector v(t) is known and denotes measured multichannel 
signals, for example, multichannel EGG recordings. In the 
following, we will describe how to find the whitening matrix 
U (Section 2.3) and the orthogonal matrix B (Section 2.4), so 
that the unknown source signal vector s(t)  can be recovered 
from v(t), 

2.3 S imple  neural  l earn ing  a lgor i thm f o r  PCA 

The PCA whitening n xm matrix U in Eqn. 5 is obtained 
using the following simple neural learning algorithm: 

Uk+ 1 = U~ - lt~[v(t)v(t) r - I ]U  k (6) 

where k denotes the learning time, and ~q. denotes the learning 
rate. The neural network structure to implement such a 
learning process is shown in Fig. l, where the first layer 
performs PCA. 

2.4 ICA neural  ne twork  with kurtosis  opt imizat ion  

To start by learning the unknown orthogonal matrix B in 
Eqn. 5 using a neural network, we denote the estimation of  B 
as the network weight matrix W = [w 1, w 2 . . . . .  wn], where w i 
is the ith n x 1 vector. Thus the estimation of  the ith source 
signal si(t  ) can be found by ~ i ( t ) = w r i x ( t ) .  Clearly, 
w I , w z . . . . .  wn must be orthogonal with one another, which 
can be guaranteed by adding a orthogonalising routine to the 
learning procedure of  W. Now our task is to learn the n 
orthogonal weight vectors w~, w 2 . . . . .  w~, based on a certain 
criterion and learning algorithm, so that s(t)  can be estimated 
from x( t )  as well as possible. 

Most suggested solutions to blind source separation pro- 
blems use the fourth-order cumulant or kurtosis of  the signals, 
defined for a zero-mean random variable ~ as 

kurt (r  = E{~ 4} -- 3(E{~2}) 2 (7) 

v(t) - - ~ , ~ - ' - ~ _  ~ ~(t) 

Based on eqn. 7, the kurtosis of  Ji( t)  is given by 

kurt(:si( t) ) = kur t (w ri x (  t) ) 

= E{(wrix( t ) )  4} - 3[E{(wTx(t))2}] 2 

= e { ( w r i x ( t ) )  4 } - 3 II wi[l~ (8) 

where 

E { ( w r x ( t ) )  2} = wri E{x ( t ) x ( t )  r } w  i = w f w  i = f[w ifl 

and 11'112 denotes the 2-norm of  a vector. Thus the final 
objective function is defined as 

J (w i )  = E{ (wrx ( t ) )  4 } + F(llwill 2) (9) 

where F is a scalar function to be determined. The ith weight 
vector w i can be updated by the following gradient algorithm: 

W ~  + 1  = W f  ~-  I~i(k) OJ 
Owi 

= ..~ + ui(k) - [+  x ( t ) ( ( . .~ ) rx ( t ) )  3 + f ( l l . . ~  tl~).'~] 

(10) 

where k denotes learning time,/~i(k) stands for the ith learning 
rate sequence, a n d f  = 2F' .  The sign 4- means that a positive 
sign corresponds to finding the local maxima and a negative 
sign corresponds to the local minima, which suggests that it is 
not convenient to use directly the learning algorithm given by 
eqn. 10. A simple and fast weight-updating algorithm can be 
derived from eqn. 10, i.e. 

w i = a[E{x(t)(WTiX(t)) 3 } -- 3wi] (1 1) 

where cr is a scalar factor. The fast algorithm for the computa- 
tion of  w is described in Fig. 2 in detail. In Fig. 2, ~ denotes 
the value of  the ith weight vector w at time = k. (.)t denotes the 
transpose of  a matrix or vector. E{-} denotes the expectation of 
a random variable and is estimated using the mean of the 
variable in practical computation. The first and second steps 
express the initialisation process. The fifth step is the vector 
orthogonalisation process, so that the matrix W finally to be 
obtained is guaranteed to be orthogonal. 

The neural learning process for estimating U and B in 
eqn. 5, described above, corresponds to the two-layer neural 
network structure, namely the ICA neural network, as illu- 
strated in Fig 1. It can be seen that the estimation of  the source 
(true) signal vector ~(t) can be derived from the measurement 
v(t), a whitening matrix U and an orthogonal matrix W, i.e. 
~(t) = W r U v ( t ) ,  where W is the estimation of  B in eqn. 5 
(s(t) = B r U v ( t ) ) .  The first layer is to perform the PCA of the 

(1) Let i=0;  
(2) Let k = 0 and w ~ = a random initial vector and set its 2-norm 

into 1; 
(3) Find y(t) = x(t)((w~i)rx(t)) 3 and estimate E{y(t)} using the mean 

ofy(t), then normalize E{y(t)}; 
(4) Find w~i +I = E{y(t)} - 3w~/; 
(5) If i = 0, go to (6), else assume that the previous i weight vectors, 

Wo, W t . . . . .  wi_ l have been learnt, construct Graml-schmidt 
orthogonal basis: 

.4, § = ~ + ,  - ( ( ~ + , ) T w 0 ) , ~ 0 - ,  . . . .  - ((~§ 
(6) Divide w~i +1 by its 2-norm; 

f wk+l r - (7) I 1( i ) w~/llsnotcl~176176176 
to step 3; 

(8) i = i + 1; if i<n go back to step 2, else stop learning procedure 
and output all weight vectors: 

W 0 ,  14~ I , . . . , Wn- I �9 

Fig. 1 

82 

Two-layer ICA network: first layer for  PCA and second one 
for  estimating B 

Fig. 2 Fast weight-updating algorithm for  computation o f  orthogo- 
nal matrix w, i.e. estimation o f  B in eqn. 5 
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mixed signals, i.e. turn their correlation matrix into a unit 
matrix (whitening), so as to simplify the problem to be solved 
(simpli~ the problem of finding the arbitrary matrix A in 
~(t) = Av(t)  into the problem of finding the orthogonal matrix 
W in ~( t )= w r u v ( t ) ) .  The simple and effective weight- 
updating algorithm for the PCA is given by eqn. 6. The 
second layer is to perform the ICA to recover the source 
signals from the whitened data. The fast weight-updating 
algorithm for the ICA is presented in Fig. 2. The learning 
process of U is completed only when E{x(t)xr(t)}  = I is 
reached, whereas the rule controlling the weight updating of  
W is that ]WrW[  = 1. In our experiments, both PCA and ICA 
algorithms are implemented in MATLAB language. Any other 
programming language, such as C/C ++ or Fortran, can also be 
used, because only some additions and multiplications are 
involved. 

3 Experimental results 

First, a validation study was performed to test the efficiency 
and performance of  the proposed ICA neural network. Two 
groups of  simulation data were carefully designed for this 
purpose. Then, two groups of  multichannel EGG data, 
obtained for humans and dogs, were chosen for the application 
experiments. All the experiments were performed under 
MATLAB 4.2 for Windows 3.1/95. 

o ) V ~ V  % '\j = 

-1 . . . . .  I 
a 

~ 1 ,  . . . . . . . . .  

b 
I , , ~  . . . . . .  

- 0 0 , 2  ---().4-- 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 
time, rain 

c 

Fig. 4 Three mixtures of  original signals." (a) mixture 1; (b) mixture 
2; (c) mixture 3 

1 i . . . . . .  r~ I 

I 
- 1 L . _ _  L i i i i i 

a 

-I"-~L-~L"--'4-~L V k/ ~ V~/ A/ V V ~J ~/.~/ V k/ V k/, k/ k/ V \t .,J 
b 

1 

. 1 1  _ . * J i . ,  . . . . . .  
0 1 0 

time, min 
c 

Fig. 5 Three separated signals." (a) recovered noise," (b) recovered 
12 cycles min -I  signal," (c) recovered 3 cycles min - /  signal 

3.1 Validations 

The first group of  verification experiments was designed to 
test whether the ICA network could perform the BSS accu- 
rately. Three-channel simulation signals, with the same length 
of 30 min and a sampling frequency of  1 Hz, were generated 

/ and given, respectively, by s I (t) = sin(2~z - 0.05t), simulating 
3 cycles min -I gastric slow waves, s~(t) = sin(27r �9 0.2t), simu- 
lating a 12 cycles min - I  respiratory signal, and s ~ ( t ) =  a 
random noise, simulating the other interference from the mea- 
surement environment. Let s denote the 3 x 1800 matrix con- 
structed by the three signal vectors, i.e. let s = [s( s~ s3 t] and 
let the mixing matrix A = [2.9 2.1 1.0; 0.22 0.2 0.2; 
0.5 0.2 0.05]; then the mixed signals, i.e. the simulated observa- 
tion signals, are obtained by v = (As) r. Fig. 3 shows the three 
original signals, in which only 120 points (2 rain) are displayed 
for clarity. Fig. 4 illustrates the mixed versions of  the three 
original signals, which intuitively give us nothing but random 
noise, and, from these mixtures, we cannot imagine which 
corresponds to the 3 cycles min - l  or 12 cycles min - l  signal. 
Only using these mixtures, however, which seem like noise, can 
the original signals be recovered, using the proposed ICA 
algorithm described above, which is illustrated in Fig. 5. 

1 

a 

b 
1 

- 1  r = i i i i ~ 

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 
time, rain 

c 

Fig. 3 Three original simulation signals. (a) 3 cycles min -1 signal; 
(b) 12 cycles min -1 signal," (c) random noise 

One of  its advantages over single-channel electrogastrogra- 
phy is that multichannel electrogastrography provides infor- 
mation on coupling and propagation. A crucial question is 
whether the proposed ICA neural network can recover the 
coupling (frequency) or propagation (phase shift) from obser- 
vation signals mixed by different frequencies of  components 
and contaminated by environment noises. It was for this 
purpose that the second group of  experiments was carefully 
carried out. 

There were four-channel simulation signals in this group, 
i.e. standard 3 cycles min - t  waves and 2.5 cycles min -1 
waves, simulating uncoupling, standard 3 cycles min - l  waves 
with 90 ~ phase shift, simulating slow-wave propagation, and 
random noise. These simulated signals are, respectively, illu- 
strated in Figs. 6a-d. Mixing them via a mixture matrix 
A = [1 3 7 2; 2 5 - 3 1.2; 4 7 5 2.4; - 0 . 7  1.4 2.5 0.9], we 
can obtain four mixtures as shown in Fig. 7. Using the neural 
network shown in Fig. 1 and the corresponding learning 
algorithms, the four original signals were recovered from 
these mixed signals, as illustrated in Fig. 8. 

Fig. 6 

.i/X,/, \~\ILl\:/\) 
a 

\',/\Y, \/\) 
b 

-1 
c 

1 

0 
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

time, rain 

d 

Four original simulation signals." (a) 3 cycles min -/signal," 
(b) 2.5 cycles min - I  signal, (c) 3 cycles rain - l  signal with 
90 ~ phaseshift; (d) random noise 
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8 
I 1 ot/ . . . .  

b 
1 

C 

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 
time, min 

d 

Fig. 7 Four mixtures of  original signals: (a) mixture 1; (b) mixture 
2; (c) mixture 3; (d) mixture 4 

a 

~ b 

~ oKK S\_S \S\2 
- I  

c 

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 
time, min 

d 

Fig. 8 Four separated signals: (a) recovered 3 cycles min - t  signal; 
(b) recovered 2.5 cycles rain-l signal; (c) recovered 3 cycles 
min -I  signal with 90 ~ phase shift; (d) recovered noise 

To investigate whether the proposed method can recover or 
keep the frequencies and phase shifts of  the original signals, 
two-dimensional vector analysis (projecting the motion tra- 
jectory between two vectors into an x-y plane) was performed 
on the original signals, mixtures and separated signals, as 
shown in Fig. 9. Fig. 9a shows the vector motion trajectory 
between channel 1 and channel 3 of  the original signals, which 
is a circle because of  the same frequency and the 90 ~ phase 
difference. As far as the mixtures are concerned, every 
situation for every pair of  channels 1 and 2, 1 and 3, 1 and 
4, 2 and 3, 2 and 4 and 3 and 4, is illustrated in Figs. 9b--g, 
respectively. These complicated patterns show that the mix- 
tures have smeared the characteristics of  the frequency and 
phase of  the original signals. As shown in Figs. 8 and 9h, the 
proposed method is not only able to recover the waveforms of 
the original signals, but also able to keep the frequency and 
phase shift unchanged after processing. Vector analysis of  the 
processed two-channel signals (channel 1 and channel 3) 
reveals an unchanged phase shift of  90 ~ (see Fig. 9h). 

3.2 Applications 

In the first group of  application experiments, three-channel 
EGGs were recorded from a patient with gastroparesis (male, 
39 years old) in the fasting state, using a specially designed 
multichannel device.* The device consisted of multiple iden- 
tical amplifiers, each with cutoff frequencies of  1.8 and 
16.0cycles min - I .  The device was tested before the study 
using a multichannel signal generator, and no phase shifts nor 
time delays were observed among the four channels when an 
identical sinusoidal signal was sent to the input of  each 

channel. Five electrodes were placed on the abdomen, includ- 
ing three active electrodes (electrodes 1-3), one common 
reference electrode (electrode 0) and a ground electrode. 
Electrode 3 was placed 2 cm above the midpoint xiphoid 
process and umbilicus, and electrodes 2 and 1 were placed 45 ~ 
upper left to electrode 3, with an interval of  4 cm. Electrode 0 
was placed 6-8 cm right horizontal to electrode 1. The three- 
channel EGG signals were derived by connecting each of the 
active electrodes to the common reference electrode. 

The proposed method was used to process the three-channel 
EGG signals. The first 10 min o f  these signals are displayed in 
Fig. 10. After separation using the ICA network, the three 
channels of  signals become those shown in Fig. 11. Compar- 
ing Fig. 10 with Fig. 11, we can easily see that the original 
three channels are contaminated by artefacts, such as respira- 
tion and motion. In the separated signals, however, the 
artefacts are concentrated on the first and second channels, 
whereas the third channel is somewhat noise-free. 

In the second application, three-channel EGG recordings 
were made in a healthy dog in the fasting state using a general- 
purpose multichannel biomedical instrumentt. Four paediatric 
disposable Ag/AgC1 electrodes were placed in the epigastric 
area of  the abdomen. Electrodes 1-3 were placed along the 
middle line, 3cm apart, and electrode 4, as a common 
reference, was located at the midpoint. The recording fre- 
quency range was 10Hz, and the signals were sampled at 
20 Hz. The reason for using a more general purpose recording 
device with a wide recording frequency range was to show the 
efficacy of the proposed method when an imperfect device is 
used to record EGGs. Fig. 12 shows the first 10 min of the 
original signals, and Fig. 13 shows those of the signals 
separated using the proposed ICA network. After processing, 
artefacts are concentrated on the second and third channels, 
whereas the first channel is somewhat cleaner. It is shown that 
a cleaner EGG can be separated out from original multi- 
channel recordings seriously contaminated by ECG and 
respiration artefacts. 

4 Discussion and conclusions 

A blind separation method is proposed in this paper for 
processing multichannel EGGs  using neural network-based 
independent component analysis. In this method, it is assumed 
that the multichannet EGG recordings result from linear 
combinations of  multiple signal sources, such as gastric 
signal plus multiple interference, or multiple gastric signals 
(to be discussed later) plus single or multiple interference, or 
other combined sources of  gastric signals and noise. It is 
further assumed that the original multiple signal sources are 
statistically independent. Based on these assumptions, the 
proposed method can be used to separate these different 
independent signal sources. It i s  apparent that the number of  
channels to be recorded must be equal to or more than the 
number of  independent signal sources. 

Unlike traditional methods, such as simple lowpass filtering 
and advanced adaptive noise cancelling (CHEN, 1989) that are 
based on some prior information and remove higher-order 
corrections in the mixtures, the proposed blind source separa- 
tion method can not only remove  frequency-overlapping 
artefacts, but also does not need any reference signals. This 

i s  much closer to practical clinic situations. 
In EGG applications, the proposed method can be used to 

separate the gastric signal f rom noise and interference and to 
detect possible multiple gastric signals in the situation of 
uncoupling of the gastric s low wave. In normal situations, 
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Fig. 9 Vector analysis (a) for channels 1 and 3 of original signals; (b)-(g) fi)r all combinations of mixed signals: (b) for channels 1 and 2, 
(c) J'or 1 and 3, (d) Jor 1 and 4, (e) for 2 and 3, (f)  for 2 and 4, and (g) for 3 and 4; (h) for channels 1 and 3 of recovered signals 

Fig. 10 Original three-channel EGG of healthy human: (a) channel 
1, (7)) channel 2, (c) channel 3 

Fig. 12 Original three-channel EGG of healthy dog: (a) channel 1, 
(b) channel 2, (c) channel 3 

Fig. 11 Separated three-channel EGG of healthy human. After 
processing, interference is concentrated on (a) first and 
(b) second channels, whereas (c) third channel is somewhat 
noise-free 

Fig. 13 Separated three-channel EGG of  healthy dog. After proces- 
sing, artefacts are concentrated on (b) second and (c) third 
channels, whereas (a) first channel is somewhat cleaner 
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the EGG is composed of  the gastric slow wave and inter- 
ference or noise. In a normal stomach, there is only one gastric 
signal source, i.e. the gastric slow wave, which propagates 
from the corpus to the pylorus. The interference recorded in 
the EGG may include motion artefacts, respiration artefacts 
and ECG artefacts (if the cutoff frequency of  the low-pass 
filter of  the amplifier is close to or above 1 Hz). In some cases, 
myo-electric interference of  the small intestine (a frequency of  
10-12 cycles min -1) may also be recorded in the EGG. It is 
apparent that this interference and the gastric slow wave are 
independent. Therefore, with multichannel recordings of  the 
EGG and the proposed method, the gastric slow wave can be 
separated from the EGG, as demonstrated by the simulation 
results shown in Figs. 3-5. 

The application experiments presented in this paper focus 
on removing artefacts from multichannel surface recordings of  
gastric myo-electric activities with different frequency ranges, 
recorded from humans and dogs. Also, the simulated experi- 
ments suggest that another promising application of  the 
proposed method would be the detection of  uncoupling of  
the gastric slow wave from the EGG. From in vitro muscle 
strip studies, it is known that the smooth muscle of  the gastric 
corpus generates a slow-wave with a frequency of  3 cycles 
min - l .  The smooth muscle of  the lower part of  the stomach 
generates a slow wave with a lower frequency 1. When the 
stomach is intact, however, the 3 cycles min- slow wave 
generated by the gastric corpus entrains the rest of  the stomach 
and propagates distally towards the pylorus. Consequently, 
only one gastric slow wave frequency can be recorded from 
either internal or surface electrodes. In the diseased situation, 
however, the gastric slow-wave may not be coupled, and thus 
different areas of  the stomach generate gastric slow waves 
with different frequencies. In addition, it is known that, in 
some diseased situations, the gastric antrum may generate an 
ectopic pacemaker of  tachygastria (slow-wave frequency too 
high) and bradygastria (slow-wave frequency too low). When 
the above abnormalities occur, there are multiple gastric signal 
sources, and the method proposed in this paper will be able to 
separate these different gastric signal sources, as shown in 
Figs. 6--9. Further clinical studies will be performed to show 
this application. 

From the above discussion, it is clear that the proposed 
method can be used to separate different signal sources. It is 
therefore not suited to the enhancement of  the signal-to-noise 
ratio of  each of  the multichannel EGG recordings. This 
limitation is actually reflected in this paper. As shown in 
Fig. 12, there are three EGG recordings, each containing 
regular gastric slow waves mixed with artefacts and random 
noise. After processing, however, only one channel shows the 
clean gastric slow wave, whereas the other two represent 
interference, as shown in Fig. 13. That is, the proposed 
method is suitable for the separation of independent signal 
sources (gastric signals and interference), but not adequate for 
the enhancement of  every single channel. 

In summary, this paper provides a blind separation method 
using neural network-based independent component analysis. 
It is attractive for the separation of the gastric signal from 
noise in multichannel EGG recordings and for the detection of  
uncoupled gastric slow waves. Although the paper is focused 
on EGG applications, the proposed method can also be used 
for the separation of  the signal from noises or detection of  
multiple signals in other biomedical applications. 
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