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A b s t r a c t - - I t  has been hypothesised by many researchers that the spike activity 
signals of the stomach are responsible for triggering peristaltic contractions. Since 
most gastric motilffy disorders include an abnormality in the contraction pattern, ff is 
very important to access this information non-invasively. The aim in this study is to 
use abdominal electrogastrogram (EGG) signals to detect the spike activity signals 
generated by the serosa of the stomach, and hence provide clinicians with a better 
method to monitor the motilffy state of the stomach. Through second and third-order 
spectral estimations performed on the serosal data obtained from canine experi- 
ments, it was concluded that the spike activity in serosal signals occupies a 
frequency range of 50-80 cycles per minute. An increase in this frequency range 
during strong antral contractions was observed both in the serosal and cutaneous 
power spectra. By using the "continuous wavelet transform" with respect to a 
modif ied Morlet wavelet, the spike activity signals generated from the serosa of 
the stomach can be detected and quantified in time from the cutaneous EGG 
records. During phase III contraction episodes, a detection accuracy of up to 96% 
from the cutaneous EGG recordings was calculated based on the scored serosal 
spike activities simultaneously recorded. 

Keywords--E/ectrogastrogram, Spike activity, Continuous wavelet transform, Modified 
Morlet wavelet 
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1 Introduction 

SINCE THE 1950s, scientists have been studying the use of the 
electrogastrogram (EGG) with advanced electrical equipment 
that allowed them to record the electrical rhythm of the 
stomach. They discovered that the stomach was electrically 
active and that the slow-wave depolarisations of this activity 
are generated by a neural network called the interstitial cells of 
Cajal (ICC) that resides between the two muscle layers (the 
longitudinal and circular muscles) and at submucosal borders 
of the circular muscle. It is assumed that the electrical rhythm is 
propagated via electrical couplings between the neurons of this 
extensive ICC network and is thus carried throughout the GI 
tract with differing frequencies. It was also observed that 
contractions are the product of some high frequency action 
potentials either superimposed on the plateau phases of, or 
in between, slow-wave depolarisations (LIU et al., 1995; 
SANDERS, 1996). Slow-wave depolarisations have also been 
called the 'basic electrical rhythm' (BER), 'electrical control 
activity' (ECA) or simply the slow-wave. The higher frequency 
action potential has been named the 'electrical response 
activity' (ERA), 'spike like action potentials' (SLAP) or just 
spike activity. When spikes occur, they usually entrain the slow 
wave and strong contractions are seen (You and CHEY, 1984; 
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ATANASSOVA et al., 1995). A widely held view among the 
researchers in this field is that the higher the frequency and 
the longer the duration of the spike activity, the stronger the 
contractions. Clinical evidence suggests that the cause of most 
gastrointestinal diseases (i.e. stress-related motility disorders, 
nausea, vomiting, dyspepsia, impaired gastric emptying, 
gastroparesis, gastric ulcer, gastric dysrhythmias) are related 
to some sort of disturbance in the motility of the stomach 
(AMY, 1975; CHEN and MCCALLUM, 1993). Hence, detection 
of any motility disorder non-invasively  has diagnostic value. 
Currently, invasive techniques such as intraluminal manom- 
etry, fluoroscopy or endoscopy are used in determining the 
rhythm and strength of the contractions. The relationship 
between the EGG and gastric motility has been widely 
investigated (SMOUT et al., 1980; YOU and CI-IEY, 1984; 
KOCH and STERN, 1994). Based on these ideas, we hypothe- 
sised that surface EGG signals can be utilised to access this 
information non-invasively. However, a new signal processing 
method has to be developed to detect serosal spike activities in 
both magnitude and frequency from cutaneous EGG record- 
ings. 

There are certain complications in the detection os these 
small amplitude, high frequency signals from the surface. A 
detailed engineering approach to this problem that could shed 
light on the properties of spike activity signals is still lacking. 
Although models have been proposed for the generation and 
propagation of slow waves (MIRIZZI and STELLA, 1985; 
MIRIZZI et al., 1986; MrNTCHEV and BOWES, 1997), none of 
these models address the simulation of spike activity. One 
problem in locating spike activity when compared with the 
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slow wave is that it does not propagate throughout the stomach. 
The slow wave spreads readily into both longitudinal and 
circular muscles (CHEN and MCCALLUM, 1991, 1993; LIU et 
al., 1995). This localised behaviour of the spike activity can be 
observed experimentally: if a series of electrodes are placed on 
the serosal wall of the stomach along the Greater Curvature, 
spike activity can be detected only at a certain part of the 
stomach, and it stays local to that region (LIU et al., 1995). This 
could create major problems when trying to record these 
locally generated signals from the abdominal surface. This 
localised behaviour of the spike activity makes it difficult to 
model using a propagating dipole model. 

Another major concern is the electrical properties of  the 
layers underlying the skin, including the abdominal muscles, 
fat, omentum, peritoneum and vessels. These layers may have 
distorting effects on the original serosal signal resulting in the 
attenuation, smearing, and smoothing of the information- 
bearing data (BRADSHAW, 1995). Although this assumption 
needs to be verified by a volume conductor approach, we can, 
without loss of generality, conclude that the resultant signal at 
the surface is generally weak in amplitude and contaminated by 
many other electrophysiological signals, such as the ECG, the 
EMG of abdominal muscles or the respiratory signals. 
Therefore, the exact location of the surface electrodes can 
have a major influence on the detection of serosal spike 
activities. On the other hand, it has been observed, through 
correlation studies, that the slow wave tends to pass readily 
through the tissues without being heavily attenuated. This is 
why all previous research has concentrated on the energy 
changes of the EGG in the frequency range 1 to 18 cycles 
per minute. 

This paper reports investigations of the time-frequency 
characteristics of the serosal signals when the stomach is at 
rest (no spike activity), and compares the results with signals 
recorded when there are contractions (slow waves followed by 
spike activity). The slow wave and slow wave combined with 
spike activity are modelled as stationary random processes. 
Two different power spectrum estimators are used in estimating 
the frequency response (range) of spike activities. The auto- 
regressive method is based on the second-order moments of a 
signal whereas the bispectrum-based method utilises the third- 
order moments in identifying the impulse response of the signal 
(NIKIAS and PETROPULU, 1993). It is shown that bispectrum- 
based power spectrum estimation yields a clearer distinction 
between the spectra of the serosal signal with and without spike 
activity. We conclude from the analyses of dog experiments 
that the frequency range of spike activity falls between 50 and 
80 cycles per minute. 

We then try to determine whether the stomach's localised 
electrical activity actually penetrates the abdominal layers by 
studying the correlation between the two sets of recordings: 
serosal and abdominal (surface) data. The Power Dynamics 
(PD) method is used for correlation study, as has been used 
by others (SMOUT et al., 1980; KOCH and STERN, 1994; 
MINTCHEV and STICKEL, 1997a, 1997b) to investigate the 
reliability of EGG. It has been shown that when the energy 
progression of the slow wave activity at a certain distinct 
frequency is tracked (i.e. three cycles per minute), the serosal 
and abdominal signals portray the same trend. We therefore 
apply a similar approach to correlate the energy progressions of 
the two sets of  recordings (serosal and surface) but instead 
within certain frequency bands. Tracking the energy changes in 
certain frequency bands provides an indication of whether 
some of these electrical activities are reflected on the surface. 
Since we can select the frequency band for the energy 
correlation analysis, we termed the method the Selective 
Power Dynamics, SPD. This method is explained in detail in 
Section 2. 

The results from SPD analysis suggest that accurate detec- 
tion of spike activity is extremely dependent on the electrode 
location on the surface of the abdomen. One method is to align 
the surface electrodes with the axis of  the stomach in corpal to 
anal direction and to acquire signals with a DC amplifier 
(MIRIZZI and STELLA, 1985; MIRIZZI et al., 1986), then apply 
appropriate filtering to remove the noise and artifacts. 
Correlation studies on the SPD are performed between the 
serosal and surface data. I f  high correlation occurs, we then use 
the continuous wavelet transform (CWT) to analyse the data 
for spike detection. Using this method, we are able to localise 
the spike activity from both the serosal and surface data, where 
they match in time and frequency. 

2 M e t h o d s  

2.1 Data acquisition 

We have conducted a number of canine experiments where 
we acquired simultaneous data from the serosal wall of the 
stomach and the abdominal surface. All the experiments were 
carried out at the Genesee Hospital of the University of 
Rochester, Rochester, NY. The data acquisition system 
consisted of a Grass Polygraph* and an analogue to digital 
converter board.t We used commercially available data acqui- 
sition software** to record EGG data into a PC. The data were 
sampled at 100Hz. The digitised data were then further 
decimated to 4 Hz to eliminate artefacts and interference from 
other electrophysiological sources. During the experiments, the 
animals were anaesthetised intravenously (i.v.) with 30 mg kg 1 
Nembutal. Platinum bipolar serosal electrodes were implanted 
surgically to the serosal surface of the stomach along the 
Greater Curvature approximately 2, 4, 6 and 8 cm from the 
pylorus as shown in Fig. la. In most of these experiments, the 
electrode closest to the pylorus was used in determining the 
frequency characteristics of the spike activity. Strain gauges 
were sutured next to the electrodes at 2 and 6 cm from the 
pylorus. Simultaneously recorded serosal and surface data can 
be seen in Fig. 4. The signal .in Fig. 4a, was acquired from a 
region close to caudad corpus. 

After the abdominal skin was closed with Dermalon sutures, 
the skin electrodes were placed on the abdominal surface 
corresponding to the antral area. Two pairs of skin electrodes 
were placed after skin preparation by shaving and cleaning 
with soap and alcohol to reduce skin resistance. We have tried 
several configurations for recording the EGG data to obtain the 
highest amplitude signal (see Fig. lb). 

The electrodes were placed on the abdominal surface in 
accordance with the placement suggestion by MmlZZI and 
STELLA (1985) and MIRIZZI et al. (1986). The recordings 
were divided into phases where each phase was either a basal 
recording or a contraction recording. The contractions were 
induced by intravenous injection of Erythromycin (0.1- 
1.0~tgkg-'). The surface signals recorded after such an 
injection are shown in Fig. 4b. 

2.2 Signal processing 

In this section we briefly explain the signal processing 
methods used in pursuing our goals, which are listed as 
follows: 

* Sandhill Data Acquisition System, Model 7. 
1" National Instruments. 
** BioView (Sandhill Science Inc) and LabView. 
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(a) Placement of electrodes on the canine stomach wall, 2, 4, 
6, and 8 cm from the pylorus. (b) Location of the electrodes 
on the abdominal surface of the dog in supine position. The 
pairs of electrodes are placed to be aligned with the long- 
itudinal axis of the stomach 

Determine. the frequency range of the spike activity. 
Apply the SPD method to determine the correlation between 
the serosal signal and the abdominal signal. 
Localise the spike activity in both the serosal and abdominal 
signals using the time-frequency analysis method or the 
continuous wavelet transform (CWT) developed by Morlet 
(MORLET and ARENS, 1982). 

2.2.1 Determining the frequency content o f  spike activity 
From our experiments and from information deduced from 
the literature, we conclude that the spike activity is best 
recorded from the terminal--orad antrum, approximately 2-  
4 cm from the pylorus (BERNE and LEVY, 1993), as in Fig. la. 
A segment of data with spike activity recorded from Ch 2 (Fig. 
lb) can be seen in Fig. 4a. 

To determine the frequency range of the spike activity we 
applied both parametric and non-parametric power spectrum 
estimators: the auto regressive (AR) method and the bispec- 
trum-based (BiS-based) method. These methods are explained 
briefly in the following paragraphs. Power spectrum estimators 
depend on the assumption that the signal is stationary or at least 
remains stationary in a chosen window. In our case, although 
the EGG signal is non-stationary in nature, we assume that it 
remains stationary in a short analysis window. The choice of 
window size and its effects are discussed in the following 
sections. 

AR method. In this method, it is assumed that the discrete 
time signal x(n) is the output of a linear time invariant (LTI) 

all-pole filter that is excited by a white, zero-mean Gaussian 
noise w(n) (PROAKIS and MANOLAICdS, 1996). The AR process 
can be formulated as: 

P 
x(n) + y~ akx(n -- k) = w(n) (1) 

k=l 

Here, we write the z-transform A(z) of the coefficients a k as 
A(z) = Y~.k ak z-k, where p is the order of the estimator. The 
calculation is based on the autocorrelation function of the 
signal: 

1 N - m - 1  
rxx(m) = N ,~=o x*(n)x(n + m) m >I 0 (2) 

where * stands for complex conjugation. Since we are working 
with real signals, the conjugation operator is omitted. In this 
equation, the biased estimate of the autocorrelation fimction is 
used to ensure that the autocorrelation matrix is positive 
semidefinite. Calculation of the AR coefficients from the 
estimate of the autocorrelation function is carried out using 
the Yule-Walker solution, and the corresponding 'power 
spectrum estimate' (PSE) can then be formulated as: 

^2 
p ~ ( f )  _ awv (3) p . 2 

[ l -b kY'~= l fiP( k)e- flnlk 

where fie(k) are estimates of AR coefficients calculated by the 
Levinson-Durbin algorithm and 

awp̂ 2 = =- rxx(O) [-I [1 - Ifik(k)l 2] (4) 
k=l 

is the estimated minimum mean-square value for the pth order 
predictor (PROAKIS and MANOLAKIS, 1996). In our analysis we 
use a 10th-order AR process to estimate the power spectrum of 
the serosal signals. Analysis window duration is 1 minute with 
80% overlapping (REDDY et al., 1987). The PSE of the 
unspiked and spiked activity of serosal signals can be seen in 
Fig. 2a where clear separation of the PSEs of the two signals 
cannot be obtained. 

Bispectrum-based method. The bispectrum-based method 
depends on the third-order statistics of the signal whereas the 
AR method uses the second-order statistics. The assumption is 
that the probability distribution function of the excitation signal 
is non-Gaussian. We can express the convolutional model of 
the measured signal x(n) as: 

M 
x(n) = ~ h(k)w(n - k) + 9(n) (5) 

k=-N 
where h(n) is the LTI, non-minimum phase system, w(n) this 
time is the stationary, zero-mean, non-Gaussian, independently 
identical distributed (i.i.d.) white noise, and 9(n) is the additive 
zero-mean Gaussian white noise, independent of w(n) (NIKIAS 
and PETROPULU, 1993). The third-order cumulants of the signal 
x(n) are given by the equation below: 

rx(n 1, n2) = E[x(n)x(n + nl)x(n + nz) ] (6) 

where E[.] is the expected value operator. By taking the Fourier 
transform of this cumulant sequence in eqn. 6, we obtain the 
bispecmma Bx(o)l, co2): 

oo 
nx(o)l,  ('02) : E ~ r~(n 1, n2)e -j(~176 (7) 

nl~--OG n2~--OG 

When we substitute eqn. 6 into eqn. 7, we obtain 

B~(o)l, co2) = 3tt(o)l)I-I(o)2)H*(o)l + co2) + Bg(o)l, o)2) 
(8) 
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Here, fl = E[w(n) 3] and Bg(0),, 02) is the bispectrum of g(n). 
The advantage of this method is that the bispectrum of the 
Gaussian noise term becomes null in theory. Hence, the 
bispectrum operator actually eliminates the effects of any 
additive Gaussianity to the signal. The goal of this analysis is 
to reconstruct the impulse response h(n) from the bispectrum 
B x ( 0 )  t ,  0 ) 2 )  (NIKIAS and PETROPULU, 1993). We then estimate 
the power spectrum of h(n), ]H(0))[ 2, by using the standard 
periodogram method. In our analysis for estimating the PSE of 
the spiked versus unspiked activity, among many available 
methods we adopt the method of ALSHEBEILE and ~ETIN 
(1990) to obtain h(n). The results of our analysis for IH(0))I 2 
can be seen in Fig. 2b, where a distinct energy increase is 
observed in the spectrum of the spiked activity with respect to 
the unspiked activity. 

2.2.2 Selective power  dynamics (SPD) method In an attempt 
to perceive whether the energy variations within certain 
frequency bands of the surface signal follow the serosal 
signal's energy, we modified the power dynamics method 
used by Mintchev (MINTCHEV and STICKEL 1997a, b). This 
method is based on calculating the energies of a signal within 
certain frequency bands from the periodograms of the signal. 
First the signal x(n) is multiplied by a window w(n) with 
length L points and then Fourier transformed (OPPENHEIM and 
SHAFER, 1989): 

L - 1  

X(0))  = Y~ x(n)w(n)e  -j~~ (9) 
n = 0  

To compute the estimate of X(0)), we use: 

ex(c~ = ~ U  IX(0))12 (10) 

where U is a constant to normalise the bias in the spectral 
estimate. Eqn. 10 is called the periodogram if the window used 
is rectangular (OPPENHErM and S ~ E R ,  1989). The. total 
energy, ex(0) 1, COz), in the interval [0)1,092] is calculated 
according to the formula below: 

I? ex(0)l, e)2) = Px(0))d0) (11) 
i 

The duration of the analysis window w(n) is chosen to be 1 
minute and no overlap is allowed. The frequency bands we 
choose are 1-5, 5-20, 20-50, 50-80 and 80-110cycles per 
minute as dictated by the power spectrum analyses (Figs. 2b 
and 6b). We correlate the selective power dynamics (progres- 
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sion Ofex) of the serosal signal to the one calculated for the two 
surface recordings. Once again our aim is to observe the level 
of energy penetration to surface data from the serosal signal in 
various frequency bands. This correlation analysis provides 
insight into the reliability of EGG data, since it is still disputed 
whether or not EGG is a sufficiently reliable representation of 
the gastromyoelectric activity to be used as a diagnostic tool, 
similar to EKG, EEG or EMG (CHEN and MCCALLUM, 1991, 
1993; KOCH and STERN, 1994; MINTCHEV and BOWES, 1994; 
MINTCHEV and STICKEL, 1997a). 

2.2.3 Time-frequency representation o f  spike activity After 
evaluating the frequency range of the spike activity, we then 
search for a time-frequency analysis tool that will provide the 
highest resolution in this frequency range. The continuous 
wavelets transform (CWT) is a method of representing the 
frequency contents of a signal in time�9 It is one of the common 
time-frequency representations especially applicable to non- 
stationary data. 

In the continuous case, when the real random signal x(t)  is 
considered for a time varying spectral analysis, the first thing 
we should know a priori  is whether the signal is stationary or 
non-stationary. One way of getting around the stationarity 
problem is to pseudo-stationarise the signal by dividing it 
into quasistationary segments of equal length�9 This approach 
leads to the spectogram, or the squared magnitude of the 'short 
time Fourier transform' (STFT) given by the equation: 

I 7 o o  u ) e - J 2 n V U d u 2  STFTx( t ,  v) = x (u)w( t  - (12) 

Here, a window function w(t) with a finite duration is multi- 
plied by the signal and then slid t points (seconds) in time. To 
achieve high frequency resolution, the window length should 
be increased, which results in decreasing the time resolution. If 
certain properties of the window can be changed continuously 
so as to compensate for the change in frequency or time 
resolution, we arrive at the CWT (GROSSMANN et al., !987; 
RIOUL and DUHAMEL, 1992): 

CWTx(b ,  a) = - ~  x(t)~k* dt (13) 

Here * denotes the complex conjugate of the window fimcfion 
~(t), and ~r is added for energy conservation. Eqn. 13 is 
defined on the open 'time and scale' half-plane (b E R, a > 0), 
hence called the 'time-scale' analysis since the window ~k(t) is 
scaled by the constant a in time. This procedure, if analysed in 

Medical & Biological Engineering & Computing 1999, Vol. 37 



detail, is nothing but a 'constant-Q filter bank' approach 
(VETTERLI and HARLEY, 1992). Eqn. 13 can be written in the 
Fourier Domain with the help of  Parseval's Identity: 

CW T~(b, a) = ~ [ ~(aco)eJb~ (14) 

Here ^ denotes Fourier transform. In eqn. 14 we see that the 
Fourier transform of the signal x(t) is multiplied by the Fourier 
transform of a scaled version of  the window function ~(t) 
termed the mother wavelet. By scaling the argument of  the 
mother wavelet a times in the frequency domain, we can 
change its frequency response. Basically, the mother wavelet 
is an ideal bandpass function that should satisfy the following 
admissibility conditions (VETTERLI and HARLEY, 1992): 

(a) 27r J" ItT/(co)[2 dco < co; 
^ Ico l  

(b) 4,(0) = 0 ~ J" ~O(t)dt = 0; 

(c) ft"~(t)dt=O n = 0 , 1  . . . . .  N - 1 .  

The first condition assures a decay in the Fourier domain which 
implies that the wavelet has weak convergence and finite 
energy. It is also necessary to have f lx(t)[Zdt<~x~ so that 
the signal is also of  finite energy. These two conditions (one for 
the wavelet and the other for the signal) limit the analysis to the 
Hilbert space, H ,  or the normed linear vector space, L2(R) 
(GROSSMANN et al., 1987). The other two conditions ensure 
that the mother wavelet has zero mean and is differentiable. It 
is observed that with an arbitrary choice of  a (a :fi 0), eqn. 13 
becomes a highly redundant representation of  the signal x(t). 
As the mother wavelet is scaled so that its oscillating frequency 
shifts towards higher frequencies, time resolution improves but 
we lose frequency resolution, as described by the Heisenberg's 
Uncertainty Principle (time resolution and frequency resolution 
cannot be made infinite at the same time) (GROSSMANN et al., 
1987; R~OUL and DUHAMEL, 1992; VETTERLI and HARLEY, 
1992). 

In this study, we use the Morlet wavelet as the mother 
wavelet which is a modulated Gaussian with the time domain 
equation and Fourier transform pair as follows: 

eJCOot (t2/2) ^ ~(t) = ~ e-  r = e -[(a~-~~176 (15) 
,/2re 

Here, coo is chosen such that the second maximum of the real 
part 9 f the wavelet, ~R{ff(t)}, t > 0, is half the first one at t = 0. 
Usually this value is coo = rt'v/27 ln2 = 5.336 (GRoSS MANN 
et al., 1987). With this value of  coo, the bandpass filter if(w) is 
localised at the centre of  the frequency plane. In a real case we 
do not work with continuous signals and filters but rather with 
discrete signals and filters which have finite length. Therefore 
for the discrete case, eqn. 13 with respect to the wavelet ~k(t) 
can be discretised as follows: 

CWTx(iTs, a) = Ts--~a~x(nTs)t~'({nai)Ts. ) (16) 

Here T s is the sampling interval, and i is the integer sample 
number (DUTILLEUX, 1987). In our analysis, we use=a slightly 
modified form of  the Morlet wavelet given in eqn. 15. Since we 
make use of  the discretised version ofeqn. 14, we give only the 
Fourier domain representation of  the wavelet used as: 

t~(W) ---.= e -[(%-%)=/2] -- e -[a~,=+ar~/2] (17) 

Here coc = N/{, where N is the number of  sample points (in 
our case N = 512) of  the signal, and { is the divisor that sets 
the centre frequency for the mother wavelet. Figs. 3a and 3b 
show the wave shapes of  the modified adaptive Morlet wavelet 
for { = 60 and { = 120. Details of  this work and a proof of  
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validity can be found in AKIN et al. (1997). It has also been 
shown (AKIN et al., 1997) that the modified Morlet wavelet has 
increased resolution in the higher frequencies compared to the 
conventional Morlet wavelet. Figs. 3c and 3d show the 
corresponding magnitude response for the scaled versions of  
these mother wavelets. 

The scaling is performed on co such that co s = 
co~a, (0 ~ co ~< n), where this time a = ao 2"/M, m = O, 2, 
. . . .  M -  1. Traditionally, a 0 = 2 is chosen so that scales 
increase and decrease in a dyadic fashion. But to enhance the 
frequency resolution with the compromise of  increasing redun- 
dancy, M voices can be incorporated into the scaling (RIOUL 
and DUHAMEL, 1992). In our case, M = 10 is used. The effect 
of  adding voices is to achieve a finer scaling or fractional 
dilation of  the mother wavelet, thus increasing the number of 
bandpass filters that will be produced for one scale (STRANG 
and NGUYEN, 1996). This phenomenon can be observed when 
Fig. 3c is compared with Fig. 3d where the magnitude response 
of  filters overlap with a greater percentage in the frequency 
domain. Hence, in contrast with non-overlapping (dyadic) 
wavelets, when the voices concept is incorporated, a denser 
time-frequency tiling can be obtained. 

3 Results 

Our main objective is to localise the spike activity of  the 
stomach from surface EGG recordings. To accomplish this task 
we first investigated the serosal signals by comparing the 
results of two power spectrum estimators as described above, 
and obtained the frequency range of  the spike activity. We 
processed the serosal recordings with and without spike 
activity. By comparing the PSEs of  these signals, we then 
found the frequency range of  spike activity in the serosal 
signals. Figs. 2a and 2b show the results of  such an analysis. 
After conducting five dog experiments with eight phases 
during each one, we average the results obtained from each 
phase. As can be observed the bispectrum-based approach 
yields a more distinct change between the PSEs of  unspiked 
and spiked data than the AR-based method. Careful inspection 
of  these plots reveals an increase of  energy in the frequency 
range 60-80 cycles per minute (AKIN et al., 1997, 1998). 

Next, we try to validate the assumption that the EGG 
obtained is a reliable measure of  the electrical activity of  the 
stomach (KOCH and STERN, 1994; SMOUT et al., 1980). The 
method we use is the SPD as explained in Section 2. We 
analyse the data collected from five different dog experiments, 
and tabulate the correlation coefficients between the SPDs of  
serosal and surface recordings for each set of  data. Here it 
might be useful to recall the definition of  the correlation 
coefficient (p) between data X and data Y: 

C o v [ X ,  I1] 
Px r = V'-Q-~[X]Var[ I1] (18) 

In eqn. 18, Cov[X, Y] is the covariance of  the data X and Y, 
Var[X] is the variance of  X. Table 1 presents the cumulative 
results of  all the experimental data. We exclude data that have a 
correlation coefficient of  less than 0.6. The results show that in 
each of  the frequency ranges, the correlation is relatively high. 
There are many explanations for not obtaining a higher 
correlation coefficient which we will discuss in the 
Conclusions section. 

Similarly, when signals recorded from the two surface 
electrodes (seen in Fig. l b) are correlated, a high correlation 
coefficient is obtained. In Table 2 the results of  such an 
analysis are presented. 
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Table 1 Correlation analysis between serosal and surface recordings 

Frequency range Average SD 
cycles per minute 

1-5 0.79 0.11 
5-20 0.79 0.12 
20-50 0.78 0.12 
50-80 0.80 0.11 
80-110 0.78 0.11 

Table 2 Correlation analysis between two surface recordings 

Frequency range Average SD 
cycles per minute 

1-5 0.91 0.07 
5-20 0.90 0.09 
20--50 0.85 0.12 
50--80 0.84 0.12 
80--110 0.80 0.12 

As the energy in the serosal signal increases, so does the 
energy in the surface recording. One major problem with 
correlation analysis is the introduction of a delay factor 
between the two signals. The autocorrelation coefficient P x x  
of a signal decreases if the lag between the two is increased. 
However, we know from the volume conductor theory that a 
biosignal generated internally must be distributed simulta- 
neously on the surface (BRADSHAW, 1995). Hence, when we 
compute the energy of the pylorus signal and compare it with 

the surface signal, we see a delay in the energy increase of the 
corresponding spike activity. Thus, low correlation will be 
obtained between the pylorus, signal and the surface signal. 
This low correlation can be increased by lengthening the 
analysis window to two minutes or by shifting the serosal 
(surface) signal so that they match each other. In the case of  a 
duration of two or more minutes for the analysis window, the 
correlation coefficient rises to values of 0.92 and above. The 
disadvantage of increasing the window length is losing the time 
resolution. The spike activity is a short duration signal, there- 
fore the window length should be short enough to capture the 
fast changes in the frequency content of the signal but also long 
enough to compensate for the slow wave frequency. 

In Section 2, we described the two approaches used to 
determine the frequency range of  the spike activity as recorded 
from the serosa of the stomach. The analysis window chosen 
for both methods is one minute. The reason for not choosing a 
shorter window is because, as the window is shortened, the 
frequency resolution worsens. Also, regular slow waves 
recorded from the serosa usually resemble bursts (Fig. 4a). 
When we decrease the length of the window, we see that the 
spectrum of the burst signal dominates the spike activity's 
frequency band. So, there is a trade-off between a correlation 
coefficient that is proportional to the length of the analysis 
window and the precise frequency content of the spike activity. 
We chose a window duration of one minute. Our results are 
confirmed by analysing data obtained from Dr J. D. Chen of the 
Lynn Institute for Healthcare Research, Oklahoma City, OK. 
Both methods (AR-based and BiS-based) detected an increase 
in the energy during contraction (C) episodes at frequencies in 
the range 50-80 cycles per minute (see Figs. 6a and 6b). 

386 Medical & Biological Engineering & Computing 1999, Vol. 37 



800 [ . . . . . . .  ,. r .  �9 = . . . .  ! . . . . . . . . .  T ! . . . . .  ! . . . . .  ! . . . . . . . . .  [ . . . . . .  ! .... 
c o o t  . . . . . . .  ! . . . . . . . . .  i . . . . . . . . .  i . . . . . . . .  t . . . . . . . . .  i . . . . . .  i . . . . . . . .  i . . . . . . . . .  :: . . . . . . . . .  i . . . . . . . .  : : .~-~  
4 0 0  �9 �9 . { . . . . . . . .  } . . . . . .  . . . . . . . . .  { . . . . . . .  . . . . . . .  ~ . . . . . . .  . . . . . . . . .  :: . . . . . . .  :: . . . . . . .  ~ �9 

~ o i ~ f 1 ~ 2 o o . ,  i . . . . .  i . . . . . . . . . . . . .  i . . . .  i . . . . .  i . . . . . . . . . . . . .  { . . . .  i . . . . . . .  ~ 

- 6 0 0  k . . . . . .  i . . . . . . . . .  ~ :  . . . . . .  i . . . . . . . .  i . . . . . . . .  ~ . . . . . . . . .  ~ . - ~  . . . . . . .  i - - . . q  

a 

4 0  . . . . . . . .  i . . . . . . . . . .  �9 . . . . . . . .  , . . . . . . . . .  : . . . . . . . . .  ! . . . . . . . . .  ~ . . . . . . . .  ~ . . . . . . . .  ! . . . . . . . .  ~ . . . . . . . .  t . . . . .  

2 o  . . . . .  i . . . . . . . . .  i . . . . . .  i . . . . .  i . . . . . . . . . . . . . .  i . . . . . . . .  i . . . . . . . .  ~ . . . . . .  i } 

0 . . . .  ' /: -.~ . . . . . . .  ~ :. . . . . . .  i " 
to - 2 0  �9 . i  . 

- 4 0  

1 .0  1 . 2  1 .4  1 .6  1 . 8  2 . 0  2 . 2  2 . 4  2 . 6  2 . 8  3 . 0  

t i m e ,  ra i n  

b 

Fig .  4 (a) Serosal recording from terminal antrum. ('b) Simultaneous 
EGG recording from the abdomen. The spike activity can be 
seen on the plateau phases of  the serosal signal (a) 

Nevertheless, it should be noted that our results were obtained 
from signals acquired from dogs under anaesthesia, whereas Dr 
Chen's recordings were from conscious dogs and the contrac- 
tions are the result of  feeding where the acquisitions were 
initiated during the postprandial stages. Therefore, slight 
differences in the frequency ranges of  the spike activity are 
quite natural. We do not have a full explanation of  the effects 
of  the anaesthesia but this analysis indicates that there are 
differences in the signals obtained (compare Figs. 4 and 5). 

We used data from a position closest to the pylorus in 
evaluating the frequency content of  the spike activity (see 
Fig. la). The results from the analyses conducted on the new 
set of  data confirmed the same frequency interval for the 
serosal spike activity as obtained from the Rochester experi- 
ments. 

We apply the CWT method to detect the serosal spike 
activity from cutaneous EGG recordings. There are various 
fast CWT algorithms, and we chose one that depends on the 
FFT algorithm (PdouL and DUHAMEL, 1992; VETTERLI and 
HARLEY, 1992). CWT of the data is calculated for 512 points, 
which corresponds to 2.13 minutes when the sampling rate is 
4Hz, and 1.76 minutes when it is 5 Hz. The value of  { as 
explained in Section 2 is usually chosen between 25 and 29. In 
Fig. 7, we show the CWT of such an analysis, where a slight' 
shift in the frequency locus of  the spike activity between the 
serosal signal and the surface signal can be seen. However, the 
main peak occurs at around 60 cycles per minute. Also, most of  
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the signals between 70 and 80 cycles per minute seem to be 
stopped by the tissue layers whereas 50-70 cycles per minute 
signals can be seen at the surface. This could be the reason for 
the difficulty in obtaining an exact match between the frequen- 
cies of  the serosal and surface signals. Additional results were 
performed and they all lead to the same conclusion. The 
detection accuracy is calculated by a blind study, where the 
number of  contractions indicated by the strain gauge attached 
to the serosa is compared with the number of  spike activities 
detected from the cutaneous signals. The average detection is 
found to be 87% for the Rochester experiments, and 96% for 
the Oklahoma experiments. The reason for the increase in 
detection ratio is the enhanced strength of  the serosal spike 
activity signals of  the Oklahoma experiments. Detailed 
analyses and results can be found in AKIN (1998). 

4 C o n c l u s i o n s  

Gastrointestinal motility has long been investigated by both 
clinicians and engineers. One of  the main issues discussed by 
these experts is the relationship between the contractions and 
the electrical activity of  the stomach. It has been hypothesised 
that small amplitude signals with high frequency content, 
namely spike activity, might be responsible for triggering the 
contractions (You and CHEY, 1984): These signals are super- 
imposed on the slow-wave depolarisations that are assumed to 
be generated by the dense neural network, ICC, lying among 
the two muscle layers, namely the longitudinal and circular 
muscles of  the organs of  the GI tract. 
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Fig .  6 PSEs from (a) AR method, and (b) BiS-based method, no contraction, unspiked data; . . . . .  contraction, data with spike activity. 
Data are obtained from Lynn Insn'tute for HealthcwTe and Research 
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Fig. 7 CWTof serosal data (a), and surface data (b). x axis for both images is the time in minutes. Below each image, the eolourbar representing 
the energy levels is displayed 

Our aim in this paper is to detect the spike activities non- 
invasively from surface EGG recordings. In our studies we first 
identify that spike waves within a certain frequency range can 
penetrate the layers of the abdomen by using the correlation 
method and then apply the CWT method to analyse the results. 
Researchers have designed various experimental setups for 
properly detecting the rhythmic activity of the organs of the 
GI tract, especially the stomach and intestines. They preferred 
to adjust the cutoff frequency of the lowpass filter to 0.18-0:33 
cycles per minute, whereas we use a higher cutoff range of 
35 Hz at a sampling rate of 100 I-Iz to start the acquisition and 
then decimate the digitised signals to 4 Hz. The decimation 
process is incorporated because the spike activity signals are 
observed to cover a frequency interval from 50 to 80 cycles per 
minute (0.83 to 1.33Hz). Hence a decimation to 4Hz is 
preferred. The same sampling frequency is also recommended 
by the theoretical work of REDDY et al., 1987). 

We first analyse the serosal signals recorded from the 
stomach and evaluate the frequency range of the spike 
activity by using two power spectrum estimators; autoregres- 
sive and bispectnma based methods. These methods yield a 
range of 50-80 cycles per minute for the frequency range of 
the spike activity from our dog experiments. In these analyses 
we observe that the bispectmm-based method presents a 
clearer difference between spiky and unspiked data. We 
therefore conclude that the Gaussian nature inherent in 
serosal signals blurs the frequency content; thus, the bispec- 
trum-based PSE is a better method for tracking changes in the 
serosal signal. 

We then focus on the surface recordings to see whether there 
exists a correlation between serosal and surface recordings at 
this frequency range. We modified the method of power 
dynamics into an algorithm that could provide a selection of 
frequency ranges of interest: selective power dynamics (SPD). 
This method answers the questions concerning signal penetra- 
tion through tissue. We then observed that the energy progres- 
sion in surface signals follows that from serosal recordings. 
However, in certain cases the correlation between the two was 
not as high as expected. There are many reasons for having low 
correlation coefficients between serosal and surface data: 

1. Serosal electrodes measure the electrical activity of a very 
localised site. This site usually represents the dipole ring of 
serosal activity; the EGG signal is an integrated activity of the 
whole stomach (MIRIZZI and STELLA, 1985; MIRIZZI et al., 
1986; FAMEONI, 1994; MINTCHEV and BOWES, 1994). 
2. Spikes occur locally on the serosa of the stomach. If  at any 
time a spike occurs at a different site from the measuring one, 
then the serosal electrode will not pick it up, while the surface 
electrode might. 
3. It is not clear how the tissue layers affect the serosal signal. 
Smearing or filtering of the signals might lead to low correla- 
tion coefficients. 
4. Interference of respiratory, EKG, motion signals and other 
artefacts can decrease the correlation coeff• 
5. Delay factor plays an important role. This delay may not be 
as a result of penetration, but rather from the horizontal 
distance between two recording sites. If we trace the vertical 
projection of the surface electrodes onto the stomach, we see 
that they cover a larger area (Fig. lb). According to the 
quasistationary electric field formulation (PLONSEY, 1969), 
electrical activity generated at one point of the body is 
distributed to all points of the body. So spike activity occurring 
at a site other than the serosal recording site could also show up 
in the surface recording, delayed by several seconds. This delay 
might be responsible for low correlation as well. We tested this 
hypothesis by increasing the length of the analysis window, 
and observed that the correlation coefficient was raised to 0.92. 

After observing that spike activity passes through tissue, we 
apply the continuous wavelet transform representing the time- 
frequency distribution of both recordings. The reason for 
choosing CWT over other representations is its high time and 

frequency localisation properties. We compare our results with 
the spectogram and running spectrum, and conclude that the 
CWT yields higher clarity in enhancing high frequency signal 
components (QLAO, 1997). One problem with the CWT method 
is its computational complexity. 

We are now able to detect the spike activity of the stomach 
from surface EGG recordings with the help of SPD and CWT 
methods. Nevertheless, the real problem lies not in selecting 
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the right algorithm, but in data acquisition. We observed 
during our experiments that as the surface electrodes were 
rotated such that their bipolar axis became perpendicular to the 
longitudinal axis of  the stomach, correlation decreased. This is 
further confirmation of  Mirizzi 's  work (MIR1ZZI and STELLA, 
1985; MIRIZZI et al., 1986). We believe that further work is 
needed in improving data acquisition and electrode placement. 
We also suggest that a standardised EGG electrode placement 
should be developed as this is an important factor in EGG 
measurements. 
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