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ABSTRACT

Gastric contraclions play an imporiant vole in the digestive process of the stomach. The established method jor the
measuwremend of gastric conlvactions is invasive and involves the insertion through the nose of a manometyic probe
into the stomeach, A non-invasive method is introduced in this paper for the idenlification of gastric conlractions
wusing the surfuce electrogastrogram. The electrogastrogram (1:GG) was measwred by placing swface dlectrodes on the
abdominal skin over the stomach in ten subjects. Gastric contvactions were simultaneously monitored wsing e
intralwminal manometric probe. The back-propagation newral network was applied to identify gastvic contractions
Jrom the EGG. The input of the newral network was composed of specival data points of the EGG which woas
compruted using the exponential distvibution method. Experiments weve conducted to optimeze network structures and
parameters. Using the EGG data in five subjects as the training set and the FGG data in anather fioe subjects as
the testing set, an overall accuraey of 92% was achieved D the identification of gastric contractions with an
oftimized  three-laver back-propagation newral network (vaonber of nodes for infud:hiddenzoudpet lavers being
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INTRODUCTION

Gastric motility plays an important role in the
digestive process of the stomach. In the fasting
state, there is a cyclical motor activity called the
migrating motor complex (MMC)'? Each com-

plex is characterized by the cyclical occurrence of

motor gquiescence (Phase 1), seemingly random
contractions (phase II) and maximum contractile
activity {Phase 11I}. The MMC serves as an ‘intest-
nal housckeeper’ that empties non-digestible con-
tents from the stomach into the small intestine.
In the postprandial state, there are phasic contrac-
tions propagating distally which lead to gastroin-
testinal peristalsis.

Gastric contractions can be measured mechan-
ically by intubating the stomach with a probe con-
taining pressure sensors or myoelectrically by plac-
ing electrodes on the mucosal or serosal surface
of the stomach®?. However, all these methods are
invasive and so tend not to be carried out in pati-
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ents who already have gastrointestinal motor dis-
orders.

Gastric motility is regulated by myoelectrical
activity of the stomach®. The electrical activity of
the stomach consists of two components: omni-
present slow waves and spike potentials®. Spike
potentals are superimposed on the slow wave and
are directly associated with the contractions of the
stomach. The slow wave controls the propagation
and frequency of the gastric contractions. The
normal frequency of the gastric slow wave is about
3 cycles/min (cpm) in humans.

Gastric myoelectrical activity can be measured
non-invasively by placing surface electrodes on the
epigastric area of the abdomen. The non-invasive
lechnique is called electrogastrography and the
surface recording of the electrical activity is called
the clectrogastrogram or EGG®. Previous stud-
ies'*'* have shown that the EGG is an accurate
measurement of the frequency of the gastric slow
wave and that the relative amplitude change of
the EGG reflects the contractility of the stomach.
The presence of gastric contracuons is usually sig-
nified by an increase in amplitude of the EGG.
We therefore hypothesize that an artificial neural
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network (ANN) may be trained to recognize the
presence of gastric contractions within the EGG
waveform.

The main attraction of ANNs is their ability to
learn the functions that describe input/output
mapping in a system. Neural networks have been
widely employed in pattern recognition due to
their great potential of high performance, flexi-
bility, robust fault tolerance, cost-effective func-
tonality and capability for realtime appli-
cations”®. A number of successful applications of
ANNs to biomedical signal detection and pattern
recognition have been reported, including esti-
mation of the ejection fraction of a human heart,
diagnosis of cardiac arrhythmias, identification of
corrupted arterial pressure signal, and classifi-
cation of human chromosomes®'#2%2630  The
problems of the EGG in clinical applications are
perfect candidates for ANNs. While the EGG may
have different characteristics during motor quiesc-
ence and gastric contractions, no mathematical
algorithms or ‘if-then’ statements can be made to
distinguish the EGG. The EGG signal is imprecise.
However, a large amount of data can be easily
made available due to the non-invasive nature of
the electrogastrographic technique. Therefore, in
this study we attempt to apply ANN techniques to
identify the presence of gastric contractions from
the EGG signals.

MEASUREMENT OF THE
ELECTROGASTROGRAM

Ten female volunteers with a mean age of 31
(range 20-39) participated in this study. All had
no history of gastrointestinal diseases. After an
overnight fast an upper gastrointestinal endos-
copy was performed in the morning and a mano-
metric probe was placed in the stomach and
upper small intestine. Following recovery from
sedation, the subjects were first taken to the
Department of Radiology where the stomach was
localized by ultrasonography and then to the Gen-
eral Clinical Research Center for overnight admis-
sion. Cutaneous electrodes were placed before
supper at 4:00 pm. The subject ingested a stan-
dard test meal at 5:30 pm and nothing was given
afterward. The manometric and EGG recordings
were obtained in the fasting state from 1:00 am
to 3:00 am.

Measurement of manometric activities:

Manometric activities of the distal stomach and
the upper small bowel were recorded using an
intraluminal probe (Millar Instruments Inc., Hou-
ston, Texas). The probe was about 1/8” in diarmn-
eter and was passed through the nose into the
upper small bowel by endoscopic assistance. It
contained six solid-state pressure transducers,
located 3, 13, 23, 33, 37 and 41 centimeters from
the distal end. Three ports were placed in the dis-
tal stomach and three in the upper small bowel
(see Figure I). The measured six channel mano-
metric signals were displayed on a dynograph
(SensorMedics, Anaheim, CA) and simultaneously
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Figure 1 Position of the intraluminal manometric probe

recorded on a magentic tape (Thorn EMI 3000,
England). The recording frequency range was set
at 0 to 0.3 Hz.

Measurement of the electrogastrogram:

Supine ultrasonography was performed in order
to mark the antral axis of the distal stomach on
the abdomen. The abdominal surface of rec-
ording sites was cleaned with sandy skin prepping
paste (OMNI Prep, Weaver & Co. Aurora, CA) to
achieve better conduction and to reduce skin-elec-
trode motion artefacts. Two clectrodes (bio-poten-
tial skin electrode, In Vivo, Metric, CA) filled with
electrode jelly were placed on the abdominal sur-
face, one over the distal stomach and the other
6-10 cm superior near the right breast. Respir-
ation was monitored using a Pneumotrace belt.
The EGG signal was displayed on the recording
chart by another dynograph chart recorder and
simultaneously recorded on the same tape
recorder. The low and high cut-off frequencies of
the EGG recording equipment were set at 0.02 Hz
(1.2cpm) and 0.3Hz (18cpm), respectively
(6 dB/octave). The paper speed was 0.25 mm/s.
During the study, the subjects were laid in a
supine position (except during eating) and
remained quiet and still. The EGG data were digit-
ized, post recording, at a sampling frequency of
2 Hz using a 12-bit A/D converter.



PRE-PROCESSING OF THE EGG

Previous studies'*'® have shown that the EGG
accurately reflects the frequency of the gastric
slow wave. Therefore, spectral data points instead
of raw EGG data were used as the input to the
ANN. The exponental distribution method't
introduced by Choi and Williams was applied to
compute the power spectrum of the EGG data. It
is a modification of the Wigner distribution and
has better performance than the Wigner distri-
bution in the suppression of cross-terms. .
The exponential distribution is defined as'®:

- % f / 9
o o{ )~
ED (to) =j f . \/4w7ﬂcxp(_ [:1*’ ) X

x(ptr/2) ¥ (pu~r/2) e dpud T (1)

where, x(¢) is a time signal, x¥*(¢) the conjugate of
the time signal, /1s a time index, p and 7 are inte-
gral factors, and o(6>0) is a scaling factor which
trades off auto-term resolution for cross-term sup-
pression or vice versa. To obtain a sharp auto-term
resolution, o should be large. On the other hand,
to reduce the effects of the cross-terms, o should
be small. The exponential distribution has been
proven to be effective in suppressing interferences
while retaining high resolution. Cross-term sup-
pression is achieved because cross-terms oscillate
more rapidly than signal autocomponents. The
ability to suppress the cross-terms comes by way
of controlling the single parameter o. In fact, as
o—x the exponential distribution becomes the
Wigner distribution.

A running windowed exponential distribution
(RWE) was applied in this study for the time-fre-
quency representation of the EGG signal.

is o p A z o
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where, x(n) is a digitized EGG signal, n is a time
index, u and 7 are summation factors and k is the
frequency index of the running windowed
exponential distribution. Wy(7) is a symmetrical
window with a length of N and W,(p) is a rec-
tangular window with a length of M. After
obtaining the summation in the square brackets
in the above equation, an Nepoint FFT was used
to evaluate RWE (n,k) at each time instant n.

The running windowed exponential distri-
bution is periodic in 7. To avoid aliasing in this
representation, it is necessary to either sample the
signal at a frequency which is at least twice the
Nyquist rate or use the analytic form of the signal.
In this application, the analytic form of the signal
was used. Since the analytic form has energy only
at positive frequencies, interference between
negative and positive frequency components is
avoided. The analytic signal was obtained using
two FFT’s: a forward FFT of a given realvalued
realization, a multiplication of resulting positive
harmonics by two, and negative harmonics by
zero, and then an inverse FFT,
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The performance of the exponential distri-
bution method for the time-frequency analysis of
the EGG has been thoroughly investigated by Lin
and Chen'®; the optimal parameters derived there
are used in the present study for the time-fre-
quency representation of the EGG. The previous
study indicates that the exponential distribution
method provides an accurate estimation for both
frequency and amplitude of the EGG. A simul-
ation result demonstrating its ability is presented
in Figure 2. Panel (a) of the figure is a simulated
frequency- and amplitude-modulated signal. The
time-frequency representation of this signal is pre-
sented in panel (b). The time-variations of the fre-
quency and amplitude of the signal can be clearly
observed in this time-frequency represcentation,

BACK-PROPAGATION NEURAL NETWORKS

In comparison with other ANNs, the back-propa-
gation neural network has the advantage of avail-
able effective training algorithm and betier-under-
stood system behaviour. It is a hierarchical design
consisting of fully interconnected layers of pro-
cessing nodes, with one or more hidden layers of
nodes between the input and output nodes,
figure 3 shows the back-propagation network
structure used in this study. Nodes in each layer
are interconnected in a feedforward fashion. The
connections between different layers of nodes
have associated weights which act upon the out-
puts of the first layer of nodes before they are
passed to the next. The input nodes have no spec-
ific functions associated with them. The hidden
nodes and the output nodes, however, have a
transfer function. The sigmoid functon was used
in this study.

Training of the network was accomplished by
the back-propagation algorithm?. The back-propa-
gation training algorithm is an iterative gradient
descent algorithm designed to minimize the mean
square error between the actual output of the net-
work and the desired output. The newwork was
trained by initially selecting small random weights
and internal thresholds between -0.3 and 0.3 and
then presenting the network with training data.
The weights were adjusted as follows™

wy(H1) = wi( D+ xta(w () —w (1))

where w, (1) is the connection weight from a node
7in one layer to a node j in another layer at time
/, x; is either an input or the output of the hidden
node ¢, §;is an error term for node j. 7 is a learn-
ing rate factor and « is a momentum factor
(0 <a<1). If jis an output node, then

8;= y(1=y) (d=x)

where d; is the desired output of node jand y; is
the actual output. If node jis a hidden node, how-
ever, the computation of the error terms becomes

;= x;(1~x) Z 1O,

where % is summed over all nodes in the layer
above node j Hidden node thresholds were
adjusted in a similar way by assuming they are con-
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Figure 2 Time-frequency representation using the exponential distribution method. Amplitude- and frequency- modulated signal; time-fre-
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Figure 3 Structure of a three-layer back-propagation neural net-
work

nection weights on links from auxiliary constant-
valued inputs.

The effectiveness and convergence of the back-
propagation algorithm depends significantly on
the value of the learning rate factor . A small
learning rate factor guarantees a true gradient
descent. The price of this guarantee is an
increased total number of learning steps to reach
a satisfactory solution. A larger learning rate fac-
tor results in a faster learning speed. However the
learning may not be exact, with tendencies to
overshoot, or it may never stabilize at any mini-
mum?®, In general, the optimal value of 7 is
dependent on the problem to be solved and there
is no universal single learning rate value for differ-
ent applications. That is, the learning rate factor
17; should be chosen experimentally for each prob-
em., :
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The use of the momentum factor is to speed up
the learning process. It makes the current search
direction an exponentially weighted average of
past directions and helps keep the weights moving
across flat portions of the performance surface
after they have descended from the steep por-
ton®®. Similar to the learning rate factor, the opti-
mal momentum factor should be determined
experimentally.

In this study the time-frequency representation
of the EGG computed by the running windowed
exponential distribution method was used as the
input to the network. Only 64 spectral data points
were used, which covered 0 cpm to 15 cpm. Since
the electrical activity of the stomach contains no
information above 15 cpm, spectral data points
above this frequency were discarded, which sub-
stantially simplified the structure of the network.
Two output nodes of the network represent the
presence of gastric contractions and gastric motor
quiescence, respectively. Several parameters were
optimized to achieve best performance. These
included the number of hidden nodes in the hid-
den layer, learning rate and momentum factors.

Training and testing of ANN

The EGG recording was divided into segments.
Each segment was composed of 512 time samples
and was labeled as 0 or 1. The segment was lab-
eled as 0 if no contractions were seen in the three-
channel antral manometric recordings obtained
simultaneously. The segment was labeled as 1 if
one or more contraction was present in either of
the three-channel antral manometric recordings.
The power spectrum of each segment was com-
puted by the exponential distribution method.
There was an overlap of 75% between two adjac-
ent EGG segments. The EGGS of five subjects



were used for training the ANN, and for the
remaining five subjects, their EGGs were used as
a test set. It was a random selection. Two 20 min
recording periods were extracted from each of the
10 subjects. During one 20 min period there was
an absence of gastric contractions, whereas during
the other 20 min period there were intermittent
Or cOntNuUOUs gastric contractions.

Performance of the neural network

The performance of the neural network was evalu-
ated hased on the accuracy of identification. The
accuracy (or recall) was defined as the number of
correct positive diagnoses by the network divided
by the total number of positive diagnoses by the
gold standard. The accuracy for the identification
of gastric contractions was defined as the number
of EGG segments positivelv identified by the net-
work, divided by the number of EGG segments
with actual presence of gastric contractions
assessed from the manometric recording. Simi-
larly the accuracy for the identification of gastric
motor quiescence was defined as the number of
EGG segments from which no gastric contractions
were identified by the network, divided by the
number of EGG segments with actual absence of
gasiric contractions. The overall accuracy was
defined as the mean of the accuracy for the idend-
fication of gastric contractions and that for the
identification of gastric motor quiescence.

RESULTS

The electrogastrogram

Regular 3 cpm slow waves were seen in the EGG.
The EGG exhibited a larger amplitude and more
variation in frequency whilst gastric contractions
were occurring than during gastric motor quiesc-
ence. Typical EGG signals are presented in
Figure 4. The (a) panels show the EGG and one of
the three-channel antral manometric recordings
during motor quiescence and the (b) panels, the
EGG whilst gastric contractions were occurring.

Time-frequency representation of the EGG

The time-frequency representation of the typical
EGG signal is shown in Figure 5. Figure 5a shows
the timefrequency representation of a portion
(20 min) of the EGG during motor quiescence
and Figure 50 illustrates the EGG during gastric
contractions. It is seen that the EGG during gas-
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Figure 6 Effects of learning rate on network performance

tric contractions has a higher power at 3 cpm and
more low frequency components between 0 and
3 cpm.

Neural networks

Different learning rates were investigated in the
range of 0,01 to 0.5. Figure 6 and Table 1 show the
effect of the learning rate on the performance
(average squared error) of the network with a
structure  of 64:10:2 (nodes of input:hidden:
output). The best performance was observed

Table 1 Eftects of the fearning rate on the performance of a 64:10:2
network, (momentum factor = 0.9, number of iterations = [000)

lewrning rate ave. sq. error  accuracy (rainy accuracy {test)

(.01 0008 100% Yt
.05 0.002 1009
0.1 0.0002 100%
w3 0.005 H0%
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Figure 7 Effects of momentum factor on network performance

Table 2 Effects of the momentum factor on the performance of a
64:10:2 network. (learning rate = 0.05. number of iterations = 1000)

momentum ave. sq. error  accuracy (train) accuracy (test)
factor

0.05 0.01 100% 89%

0.5 0.008 100% 92%

0.7 0.007 100% 929,

0.9 0.002 100% 92%

when the rate was chosen between 0.05 and 0.1,
with which an overall accuracy of 100% was
obtained for the training set and 92% for the test-
ing set. The effect of the momentum factor on
the performance of the same network is illustrated
in Figure 7 and Table 2. The optimal momentum
factor was found to be 0.9 for a fixed number of
1000 iterations. Finally, the effect of the number
of the hidden nodes is presented in Table 3. With
a fixed number of iterations, ten hidden nodes
resulted in better performance than five hidden
nodes, whereas no further improvement was
observed with the number of hidden nodes larger
than 10. With the structure of 64:10:2 and the
optimized values of the learning rate (0.05) and
momentum factor {0.9), the network identified
gastric quiescence with an accuracy of 90% and
gastric contractions with an accuracy of 94% from
the EGGs.

Table 3 Effects of the number of hidden nodes on the performance
of the network (testing results). (learning rate = 0.05, momentum
factor = 0.9, number of iterations = 1000)

hidden nodes accuracy

(quiescence)

accuracy (contractions}

5 84% 91%
10 30% 4%
20 90% 94%
30 90% 94%
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DISCUSSION AND CONCLUSIONS

This paper shows that the patterns (contractions
or quiescence) of gastric motility may be ident-
ified from non-invasive EGG recording using the
back-propagation neural network. It is known that
gastric motility plays an important role in the
digestive process of the stomach. The absence of
gastric contractions in the fasting state (or
absence of the MMC) is often associated with the
clinical state referred to as gastrointestinal
pseudo-obstruction. Whereas, the absence of gas-
tric contractions in the fed state results in a
delayed gastric emptying called gastroparesis. Pati-
ents with severe gastroparesis cannot tolerate solid
meals and have to limit nutrition intake to liquid
calories. Currently the measurement of gastric
motility is performed by intubating the upper gas-
trointestinal tract with a manometric probe. This
is not only invasive but biased since the intubation
of the probe may disturb the normal on-going
activity of the stomach. Using the method pro-
posed in this paper, the patterns of gastric motility
can be non-invasively identified from the EGG.
Since the measurement of the EGG does not at
all disturb the on-going activity of the stomach,
our method may not only provide an alternative
to the current invasive method but also be more
physiologically reliable than the current invasive
method. If absence of gastric contractions is
reported from the EGG by the ANN, a recommen-
dation can be made to treat the patient using pro-
kinetic agents known to stimulate gastric motility.

The time-frequency representation of the EGG
was used as the input to the neural network. This
is because the raw EGG contains interferences
from other parts of the human body?*!, such as
ECG, respiration artefacts and small intestinal
electrical activity (10-12 cpm). These inter-
ferences are usually separated from the gastric
myoelectrical activity in the frequency domain,
Several methods for the time-frequency represen-
tation of the EGG have reported in the literature.
These include the short-time fast Fourier trans-
form (STFFT)?2 and adaptive spectral analysis®>**,
The application of the exponential distribution
method was introduced recently®. The
exponential distribution method is linear in the
estimation of both the frequency and amplitude
information.

The success of the neural networks in a specific
application involves the optimization of the net
work structure and parameters. Numerous exper-
iments were conducted in this study to obtain a
better network. One hidden layer was used based
on several previous studies®® which showed that
one hidden layer resulted in the same perform-
ance as two or more hidden layers. Conflicting
results were reported in the literature on the num-
ber of hidden nodes?”. The selection of the num-
ber of hidden nodes in this study was based on
experiments which showed that 10 hidden nodes
were as effective as 40 nodes for a fixed iteration
of 1000. Other experimental results showing the
effects of the learning rate and the momentum



factor were consistent with previous findings by
others®,

In conclusion, this paper presents a non-invas-

ive method for the identification of gastric con-
tractions from the surface electrogastrogram
using the back-propagation neural network.
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