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Comparison of Adaptive Filtering in Time-, Transform- and 
Frequency-Domain: An Electrogastrographic Study 

JIAN D E  Z .  C H E N  a n d  ZHIYUE L I N  

Health Science Center, University of Virginia, Charlottesville, VA 

Abstract--Adaptive cancellation of motion artifacts in the elec- 
trogastrogram (EGG) is presented in this paper. The EGG is a 
surface measurement of gastric electrical activity. Like other 
noninvasive electrophysiological measurements, the EGG con- 
tains motion artifacts. A number of papers have been published 
on the adaptive cancellation of motion artifacts or interferences 
in biomedical signals. Adaptive filtering was performed in time 
domain in almost all of the previous publications. In this paper, 
however, three different sorts of adaptive filters were investi- 
gated and their efficiencies in cancellation of motion artifacts 
were compared with each other. These include time-domain, 
transform-domain, and frequency-domain adaptive filters. A se- 
res  of simulations were conducted to investigate the perfor- 
mance of these adaptive filters in cancellation of respiratory and 
motion artifacts. The results show that the frequency-domain 
adaptive filter has superior performance over the time- and trans- 
form-domain adaptive filters in the cancellation of stationary 
respiratory artifacts in the EGG. Although results focus on the 
EGG, this paper provides useful information for adaptive filter- 
ing of other biomedical signals. 

Keywords~Adaptive filter, Signal processing, Noise cancella- 
tion, Electrogastrogram, Motion artifacts. 

INTRODUCTION 

Electrogastrogram (EGG) is a surface measurement of  
electrical activity of  the stomach. It can be acquired by 
placing silver-silver chloride electrodes on the abdomen 
over the stomach (5). The electrical activity of  the stom- 
ach is mainly composed of rhythmic slow waves. The 
frequency of the gastric slow wave in humans is about 3 
cycles/min (cpm) in normal situations and can be as high 
as 9 cpm in abnormal situations. Previous studies have 
shown that the EGG reliably reveals the slow wave of the 
stomach (12). 

While the noninvasive EGG is attractive, it has prob- 
lems like other surface electrophysiological  measure-  

Acknowledgment Acknowledgment is made to the Thomas F. and 
Kate Miller Jeffress Memorial Trust for the partial support of this re- 
search. The authors are also grateful to the reviewers for their construc- 
tive comments and suggestions. 

Address correspondence to Jiande Chen, Ph.D.. Box 145. Health 
Science Center, University of Virginia, Charlottesville, VA 22908. 

(Received 25Jun93, Revised 6Jan94, Revised 28Mar94, Accepted 
1Apr94 ) 

ments. The main drawback of  the EGG is the poor quality 
of  the recording. It contains heavy noise and interferences, 
such as electrocardiogram (ECG), respiratory, and motion 
artifacts. Respiratory and motion artifacts are very annoy- 
ing in the EGG because: (a) they are usually strong and 
may completely obscure the electrical signal of  the stom- 
ach; and (b) their frequencies overlap with or are close to 
that of  the gastric electrical activity. Although the fre- 
quency of respiration ranges from 12 cpm to 24 cpm, 
which is higher than the gastric signal frequency, the use 
of  conventional low-pass digital filtering may not be ad- 
equate. Since the electrical signal of  the stomach is not 
sinusoidal, conventional digital filtering may distort wave- 
forms of the gastric signal by filtering out harmonics of  the 
fundamental frequency of the gastric signal. The motion 
artifact has a broad-band spectrum and its frequency is 
within the whole range of the recording frequency. There- 
fore, it cannot be eliminated by using conventional digital 
filtering without affecting the gastric signal. 

Adaptive noise cancellation technique has been shown 
to be efficient in solving the problem where the signal and 
interference have overlap spectra. A number of  publica- 
tions have been published in adaptive filtering of biomed- 
ical signals, such as the ECG signal (1,7,14,16),  evoked 
potentials (6), electromyographic signals (13), and elec- 
trogastrographic signals (2,3,4,6,12,15).  Three kinds of  
adaptive filters have been proposed. These include time-, 
transform- and frequency-domain adaptive filters. It is 
known that the transform- and frequency-domain adaptive 
filters may have superior performance over  the time- 
domain adaptive filter. However ,  in all of  these previous 
biomedical applications adaptive filtering was performed 
in time domain. In this paper, all these three kinds of  
adaptive filters are explored, and their performances in 
adaptive cancellation of respiratory and motion artifacts 
are thoroughly investigated and compared with each other. 

ADAPTIVE FILTERS 

Time-Domain Adaptive Filter 

The basic structure of  a t ime-domain adaptive filter is 
illustrated in Fig. 1, where j stands for the time instant, 
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FIGURE 1. Time-domain adaptive filter. 

z-~  for a unit delay, wkj (k = 1,2 . . . . .  N) are the 
weights of  the adaptive filter and N is the order of  the 
adaptive filter. The input to the adaptive filter is composed 
of a tapped delay line, xj, xj_ 1 . . . . .  X j _ N +  1 . The output 
of  the adaptive filter at t i m e j  is denoted by yj, which is the 
summed multiplication between the tap inputs and the fil- 
ter weights: 

N 

~ = E Wk~j -k+l  " 

k=l 

(1) 

The purpose of the adaptive filter can be described as: 

Given a primary input signal dj for an available input signal to 
the adaptive filter xj, applying a certain criterion, produce an 
output that is an estimate of the primary input dj in such a way 
that the residual error between dj and the output of the adaptive 
filter yj is made as small as possible in a statistical sense. 

The residual error ej in the figure can be written as 

ej = dj - yj. (2) 

Define 

X j  = [xj ,xj  1 . . . . .  X j _ N +  1] T (3)  

as the filter input vector and 

Wj = [Wlj, W2j . . . . .  WNj] T (4) 

as the filter weight vector, the filter output yj is equal to the 
inner product of  Xj and Wj, 

yj = x f w j  = w f x ,  (5) 

The weights of  the adaptive filter are adjusted for every 
input sample with the aim of  minimizing the mean square 
error ej. Assuming that reference input signal xj and the 
primary input signal dj are statistically stationary, a gen- 
eral expression for the mean square error as a function of 
the weight vector can be derived as follows: 

ej = 4 - YJ = 4 - XfWj  (6) 

E[e 2] = E [ d ~ ] -  2P~Wj + WfRWj,  

where E[ ] stands for the expectation, P is the cross- 
correlation vector defined by 

P = E[djXj] (7) 

and R is the input auto-correlation matrix defined by 

= E[x f]. (8) 

Using the steepest-descent method and approximating gra- 
dient mean square error by gradient square error, 

W j +  1 = W j  -- IXVj 

Vj = O~2/OWj (9) 

the famous least mean square error algorithm (16) can be 
derived: 

Wj+ ,  = Wj + 2IXejXj, (10) 

where tx is the step-size that controls the stability, the rate 
of  convergence, and the steady-state performance of the 
adaptive filter. Increase of  the value of Ix speeds up the 
convergence of the algorithm but increases the misadjust- 
ment in the steady state (16). In practical applications, the 
IX value is chosen as 

1 
0 < tx ~ total i n p u t p o w e r  " (11) 

Principle of  Adaptive Noise Cancellation 

Assume that the primary input dj consists of  a signal sj 
and noise n o, and the reference input xj consists of  noise 
nxj, and that noise n l j  is correlated with noise n0j but not 
sj, the minimization of the mean square error can be per- 
formed as follows (the time index j is omitted for simplic- 
ity): 

e = s + n 0 - y  (12) 

E[e 2] = E[s 2] + E[(n0 - y)2]  + 2E[s(no - y)] . 

Since signal s is uncorrelated with n o and with nl,  we have 

E[e 2] = E[s 2] + E[(n ~ _ y)2]. (13) 

From Eq. 13 we observe that the minimization of  the mean 
square error can only result from the minimization of 
E[(n ~ _ y)2], i .e. ,  

min E[e 2] = E[s 2] + min E[(n 0 - y)2] (14) 

It can be seen from this equation that the smallest possible 
output power is E[e 2] = E[s2]. This is achieved when the 
output of the adaptive filter y is a replica of  the noise n o in 
the primary input. 

Transform-Domain Adaptive Filter 

It is known that the t ime-domain adaptive filter con- 
verges slowly, especially when the eigenvalue spread of 
the filter input autocorrelation matrix R is large (16). An 
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approach to accelerate the convergence rate is to somehow 
transform the input signal xj into another signal with the 
corresponding autocorrelation matrix having small eigen- 
value spread. This can be achieved by performing the 
adaptive filtering in some orthogonal domain. The struc- 
ture of the transform domain adaptive filter is shown in 
Fig. 2. Define the input vector Xj as, 

Xj  = [Xj,Xj_ 1 . . . . .  Xj_N+ 1] T (15)  

the orthogonal transform of the input vector, Zj as, 

Zj = [zj(0), zj(1) . . . . .  zj(N - 1)] r (16) 

and the filter weight vector, Wj as, 

Wj = [wj(0), wj(1) . . . . .  wj(N - 1)] r (17) 

the output of the adaptive filter yj can be written as, 

yj = z f w j .  (18) 

The LMS algorithm for the adaptation of the filter weights 
is written as follows (13): 

computation of the DCT was recently proposed by the 
authors (14). It requires only 2N (N is transform length) 
multiplications for each adaptation. 

The running DCT of an input discrete series xj, 
Xj_ 1 . . . . .  Xj_ N + 1 is defined as, 

N-1 

zj(k) = ek E xJ -m COS 
m=0 

(2m + 1) krr 

2N 

k = 0 , 1  . . . . .  N - 1 .  
(20) 

Where, 

e j -  N 

2 

N '  

- - - ,  k = 0  

k = l , 2  . . . . .  N - 1  

(21) 

W 
W j + l ( k )  = wj(k) + ejzj(k), 

N - I  
1 
D IzJ(k)12 (19) 

k=O 

k = 0 ,  l . . . . .  N - I ,  

where wj(k) is the kth filter weight at time instant j and ix 
is a small positive constant controlling the rate of conver- 
gence. 

It is known that for a properly chosen orthogonal trans- 
form some reduction in the eigenvalue spread is expected. 
As a result, the transform-domain adaptive algorithm can 
be expected to have better convergence properties than the 
corresponding time-domain algorithm. In this paper, dis- 
crete cosine transform (DCT) is chosen for the orthogonal 
transform based on the following: (1) several studies have 
shown that the performance of the transform-domain 
adaptive filters using different transforms do not show 
noticeable differences (8,9,10); (2) unlike the discrete 
Fourier transform (DFT), the DCT does not involve com- 
plex arithmetic; (3) a faster recursive algorithm for the 

di 

x i ~ wj(o) 

Wi(1) .(~ 

wi(N-1) ~ Yi 

and N is the order of the adaptive filter. For a given j, zj(k) 
is the DCT in the variable k of the segment xj_,~ of xj. At 
the jth time instant, the data segment to be transformed is 
Xj ,  Xj_ 1 . . . . .  Xj--N+ l, while at (j + 1)th time instant the 
segment to be transformed is xj+ 1, xj . . . . .  Xj_N+2. 
Clearly, the data segment to be transformed is updated one 
sample at each new time instant. 

Frequency-Domain Adaptive Filter 

The frequency-domain adaptive filter is illustrated in 
Fig. 3. Fast Fourier transform is performed on both the 
primary input and the reference input. Define Xk(m) and 
Dk(m) as the kth frequency bin in the mth data block of the 
reference input and primary input, respectively. There are 
N complex weights Wk(m), one corresponding to each fre- 
quency bin. The weighted filter outputs are given by 
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.// 
El ~ 

X N 

F' 

I. 

Y ] "  

y N.POtNT 

FFT "1 

P v~ 

EN . 

f 

Y 
L~ 

OUTPUT 

FIGURE 2. Transform-domain adaptive filter. FIGURE 3. Frequency-domain adaptive filter. 
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Yk(m) = Wk(m) Xk(m),  k = 1 . . . . .  

N (N is FFT length) (22) 

and are fed to an inverse FFT operator to produce N-point 
output signals. The weighted outputs are subtracted from 
the primary input transform values at corresponding fre- 
quencies to form N complex error signals: 

ek(m) = Dk(m) - Yk(m), k = 1 . . . . .  N .  (23) 

A fast convergence algorithm for the adaptation of the 
filter weights proposed in (11) is used in this paper and 
written as follows: 

Wk(m + 1) = 

m 

E xm-i)~(i)Dk(i) 
i=1 

~kme-kkl(0) q- 2 xm-ixk*(i)Xk(i) (24) 
i=1 

k = l  . . . . .  N .  

Where * indicates complex conjugate, P~-1(0) and k are 
constant values (0 < k < 1) to be optimized for specific 
applications. 

PERFORMANCE COMPARISON 

Test Signals 

A test signal dj was produced for performance analysis 
of three different adaptive filters in the cancellation of 
motion artifacts in the EGG. In practice an EGG recording 
is composed of gastric electrical signal, respiratory and 
motion artifacts, and noise such as electrocardiogram. To 
simulate an EGG recording the test signal was generated 
by adding a pure electrical signal sj of the stomach, 
a respiratory and motion signal rj and Gaussian white 
noise nj. 

The purse gastric electrical signal sj was obtained from 
a patient who underwent an abdominal surgery. A pair of 
electrodes was placed in the serosal surface of the stomach 
during surgery. The wires were brought out through the 
abdominal wall percutaneously and connected to a 5 chan- 
nel amplifier (to be described in detail later). The respi- 
ratory and motion signal rj was obtained from the same 
patient using a pneumotrace belt. The sampling frequency 
was 2 Hz. The pure gastric electric signal sj obtained from 
the patient is presented in the top panel of Fig. 4. It has a 
frequency of 3.81 cycles/min (cpm) and peak amplitude of 
about 500 IxV. The second panel from the top shows the 
respiratory and motion artifacts rj measured in the same 
patient using the pneumotrace belt. Panel C in Fig. 4 is the 
test signal dj which is a combination of sj, rj, and Gaussian 
white noise nj with a mean of 0 and a variance of 30. 

For all experiments presented in this section, the pri- 
mary input is the test signal: dj = sj + rj + nj. The 
reference input xj is derived from the respiration and mo- 
tion signal: xj = 0.5 rj. The misadjustment M i is defined 
as the mean square error between the error signal ej and the 
pure gastric signal s~ 

Mj  = E[(ej - sj)Z]. 

Conventional Lowpass Filtering 

Figure 5 presents the power spectra of the pure gastric 
signal and respiratory and motion artifacts. It can be seen 
that the gastric signal has a primary frequency of 3.81 
cycles/min and a lot of harmonics. The respiratory and 
motion signal has a peak frequency around 15 cpm and 
high-power frequency components of 0-5 cpm. From this 
figure we can see clearly that the frequency of the gastric 
signal overlaps with that of the respiratory and motion 
artifacts. Conventional digital filtering is not adequate for 
the elimination of the respiratory and motion artifacts. 
Panel D in Fig. 4 shows the lowpass filtered (cutoff fre- 
quency: 6 cpm) version of the test signal dj. Two main 
problems can be identified: (1) frequency components of 
the artifacts below 6 cpm cannot be eliminated; (2) while 
respiratory artifact (15 cpm) is substantially reduced, the 
waveform of the gastric signal is severely affected since 
the harmonics of the primary frequency of the gastric sig- 
nal are filtered out. 

Parameter Optimization of Adaptive Filters 

In practical applications several parameters have to be 
specified for each kind of adaptive filters. The parameters 
for the time-domain and transform-domain adaptive filters 
are filter order N and step-size Ix. A large Ix results in fast 
convergence but large misadjustment in the steady state. 
The parameters for the frequency-domain adaptive filter 
are P,-x(0),  N, and h. P~-1(0) only affects the perfor- 
mance of the adaptive filter in initial state while h controls 
the convergence of the adaptive filter. For a stationary 
input signal a large h yields slow convergence and small 
misadjustment in the steady state. All these parameters 
must be optimized for each practical application. 

A series of experiments were conducted using different 
filter orders (N = 4, 8, 16, and 32) and different values of 
step-size (Ix = 10 -6, 2 x 10 -7, 10 -7, and 10-8). It was 
found that: (1) a higher filter order resulted in faster con- 
vergence but larger misadjustment in the steady-state, 
whereas a lower filter order yielded slower convergence 
but smaller misadjustment in the steady-state (see Fig. 6); 
(2) a smaller t* resulted in slower convergence (Ix = 10 -8 
was too small) while Ix = 10 -7 or 2 x 10 -7 was a good 
choice which yielded fast convergence and small misad- 
justment (see Fig. 7). Similar tests were performed to 
investigate the effects of k and P -  lk(0 ). In all experiments 
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FIGURE 4. Simulated EGG signal (C) and its processed output (E-G). (A) Internally recorded gastric signal s i from a patient. (B) 
Respiratory and motion artifacts rj measured by a Pneumotrace belt. (C) Simulated surface EGG signal d i = s i + r i + n i (h i :  Gaussian 
noise). (D) Simulated EGG after Iowpass filtering (cutoff frequency = 6 cpm). (E-GI  Simulated EGG after adaptive filtering in 
t ime-domain (N = 8, i~ = 10 -~) (El, transform-domain (N = 8, it = 0.01) (F), and frequency-domain (N = 8, ,~ = 1 and ~, = 0.9) 
(G), respectively. 

presented in this paper the following values were used: N 
= 8, li = 10 -7 (time-domain), or 0.01 (transform- 
domain), h = 0.9, and P-lk(0) = 1. 

Comparison of Three Adaptive Filters 

Performance. The misadjustment as a function of sample 
number with three different adaptive filters is presented in 
Fig. 8. It can be seen in this figure that frequency-domain 
adaptive filter has the best performance. It has a higher 
convergence speed and smaller misadjustments than the 
other two adaptive filters. The transform-domain adaptive 
filter has better performance than the time-domain adap- 
tive filter. 

The processed outputs of the test signal by the adaptive 
filters are presented in panels E-G of Fig. 4. It is seen that 
the artifacts are more effectively canceled using the fre- 
quency-domain adaptive filter (panel G) than the time- 
domain (panel E) and transform-domain (panel F) adap- 
tive filters. This can be more clearly seen in Fig. 9A in 
which power spectra of the test signal dj, the gastric signal 

sj and the processed output by frequency-domain adaptive 
filter are shown. The power spectrum of the processed 
output is almost the same as that the original gastric sig- 
nal. The primary frequency component at 3.81 cpm is 
unchanged and all the harmonics are still present after 
adaptive filtering. The power spectra of the processed out- 
put by time- and transform-domain adaptive filters are 
presented in Fig. 9B. Carefully comparing these spectra 
we can see that the frequency-domain adaptive filter is of 
the best performance and the time-domain adaptive filter 
is of the worse performance. 

Computational Complexity. The multiplications required 
for processing N samples for different adaptive filters are 
listed as follows: 

time-domain adaptive filter: 2N 2 (N adaptations) 
transform-domain adaptive filter: N 2 + 2N 2 (N adapta- 
tions) 
frequency-domain adaptive filter: 3[N/2(log2N)] + 2N 
(one adaptation). 
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FIGURE 5. Power  spectra of the gastric signal s i (solid curve) 
and respiratory and motion artifacts (star curve). The gastric 
signal has a primary frequency of 3.81 cpm and harmonics. 
The signal and artifacts have overlap frequencies. 

For N = 8, the multiplications required for time-, trans- 
form-, and frequency-domain adaptive filters are 128, 
192, and 52, respectively. Thus, the frequency-domain 
adaptive filter is the simplest in computational complexity 
for filter order of 8. The larger the filter order N, the more 
the computational savings are attained with the frequency- 
domain adaptive filter. 
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which yielded fast convergence and small misadjustment.  

CANCELLATION OF RESPIRATORY AND 
MOTION ARTIFACTS 

Measurement of the EGG 

The EGG was measured in five healthy volunteers by 
placing two silver-silver chloride electrodes on the ab- 
dominal skin over the stomach. The impedance between 
the bipolar electrodes was reduced to below 10 kfl by 
lightly abrading skin using sandy skin-prep gel. The bi- 
polar electrical signal was amplified with a frequency 
range of 0.016-0.3 Hz, on-line digitized (8 channel, 12- 
bit A/D converter; Keithley Metrabyte, MA, U.S.A.)  with 
a sampling frequency of 2 Hz, displayed and stored on a 
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FIGURE 6. Effect of filter order on t ime-domain adaptive fil- 
tering. A higher filter order resulted in faster convergence but 
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justment  in the steady-state. 
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personal computer using CODAS software (Keithley 
Metrabyte, MA, U.S.A.). The amplifier has four channels 
for the EGG and one channel for respiration (Sandhill, 
CO, U.S.A.). Respiration was simultaneously recorded 
using a Pneumotrace belt, digitized and stored in the same 
way as for the EGG signal. 

Cancellation of Respiratory and Motion Artifacts 

A typical EGG recording obtained in one of the five 
healthy volunteers is presented in Fig. 10 (top panel). The 
slow activity with a frequency of about 2.5 cpm is the 
gastric slow wave. The fast activities superimposed on the 
gastric slow waves are mainly respiratory artifacts. The 
bottom panel shows the EGG after frequency-domain 
adaptive filtering. It can be seen that the respiratory arti- 
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FIGURE 10. An EGG recording Itop panel) obtained in one of 
t h e  f ive  h e a l t h y  v o l u n t e e r s  and t h e  p r o c e s s e d  EGG by fre- 
q u e n c y - d o m a i n  adapt ive  filter (N = 8, Pk-l(O) = 1 and  ~ = 0.9). 

facts are substantially reduced. The power spectra of the 
EGG recording before (solid curve) and after (dash curve) 
adaptive filtering are presented in Fig. 11. The peak power 
at 2.5 cpm is attributed to the gastric slow wave, whereas 
frequency components around 12 cpm show respiratory 
artifacts. From this figure we can see that about 10 dB 
cancellation of respiratory artifact is achieved while the 
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FIGURE 11. Power  spectra of the original EGG (solid curve) 
and processed outputs by frequency-domain adapt ive fi lter 
wi th  ~, = 0.9 (short dash) and X = 0.5 (long dash). 
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gastric signal is not affected after adaptive filtering with h 
= 0.9 (short dash curve). The increased power around 25 
cpm is attributed to misadjustment of the adaptive filter. It 
can also be seen from this figure that a small h (0.5) 
results in less cancellation of respiratory artifacts and 
larger misadjustment. 

The time- and transform-domain adaptive filters have 
also been applied for the cancellation of the respiratory 
artifact in the EGG and compared with the frequency- 
domain adaptive filter. The results were the same as those 
obtained from the simulations, i.e., the frequency-domain 
adaptive filter attains better performance than the time- 
and transform-domain adaptive filters in the cancellation 
of the respiratory artifact. 

For cancellation of nonstationary motion artifacts, 
however, the time-domain adaptive filter yields better per- 
formance than the frequency-domain adaptive filter. A 
typical result showing the cancellation of nonstationary 
motion artifact using the time-domain adaptive filter is 
presented in Fig. 12. Panel A shows about 1 min EGG 
recording with severe motion artifact attributed to deep 
breath. Panel B is the reference signal recorded by the 
Pneumotrace belt. The bottom panel (E) shows the EGG 
after adaptive filtering in time-domain. The normalized 
least mean square algorithm was applied to avoid diver- 
gence and a large step-size [Ix = 0.5/XjTXj)] was used in 
order to follow time-varying characteristic of the input 
signal. It is seen that the severe motion artifacts are effec- 
tively removed. In comparison with the time-domain 
adaptive filter, the frequency-domain and transform- 
domain adaptive filters did not provide satisfactory results 
as shown in (C) and (D), respectively. 
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FIGURE 12. Adaptive cancellation of nonstationary motion ar- 
tifacts. (A) An EGG recording with severe motion artifacts due 
to deep breath of the subject. (B) Recorded respiration by a 
Pneumotrace belt. Three high peaks in the recording were 
attributed to deep breath. (C-E) EGG after adaptive filtering in 
frequency-domain (C), t ransform-domain (D), and time- 
domain (E), respectively. 

DISCUSSION AND CONCLUSIONS 

The time-, transform-, and frequency-domain adaptive 
filters are presented and their performances in the cancel- 
lation of respiratory and motion artifacts in the EGG are 
investigated and compared. 

To investigate the performance (misadjustment) of the 
adaptive filter a simulated test signal is needed. It is a 
common practice to use a computer-generated artificial 
test signal to simulate the real-world signal. In this paper, 
however we used the intemal gastric electrical signal as 
the "pure"  gastric signal. It is believed that the use of 
internal gastric electrical signal is better than otherwise a 
computer-generated "artificial" signal based on the fol- 
lowing. (1) Previous studies (5,12) have shown that the 
frequency of the surface gastric electrical recording is the 
same as that of the internal signal. Therefore the use of the 
intemal signal as the test signal reflects the frequency of 
the surface recording as well as its time-varying charac- 
teristics. (2) Although the waveform of the internal signal 
is not the same as the surface signal, it is more difficult to 
restore it from the test signal because the internal signal 
contains more harmonics than the surface signal. That is, 
the test signal used in this paper is more difficult to pro- 
cess than the actual surface signal. (3) The signal-to-noise 
ratio (SNR) of the test signal used in this paper is much 
lower than the actual surface signal. 

Both simulation results and real EGG applications have 
shown that the frequency-domain adaptive filter has supe- 
rior performance over the other two adaptive filters in the 
cancellation of stationary noise, such as stationary respi- 
ratory artifacts. The frequency-domain adaptive filter has 
faster convergence and smaller misadjustment than the 
time- and transform-domain adaptive filters. A frequency- 
domain adaptive filter with a length of N can be consid- 
ered as N adaptive filters each with a single weight. Each 
filter weight is optimized during the adaptation based on 
the characteristic of the corresponding frequency bin and 
thus resulting in better performance. The transform- 
domain adaptive filter produces faster convergence than 
the time-domain adaptive filter for adaptive filtering of 
input signals with a larger eigenvalue spread. This is be- 
cause the orthogonal transform reduces the eigenvalue 
spread of the input autocorrelation matrix. The frequency- 
domain adaptive signal has lowest computational com- 
plexity as well. 

For the cancellation of nonstationary motion artifact as 
shown in Fig. 12, however, the time-domain adaptive fil- 
ter provides better performance than the frequency- 
domain adaptive filter. This is because the time-domain 
adaptive filter adjusts filter weights once for each incom- 
ing data sample while the frequency-domain adaptive fil- 
ter processes data in a block manner: filter weights are 
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adapted only once for every N incoming data samples. For 
a stationary input, the signal characteristic of the first N 
samples is similar to that of the next N samples and the 
filter weights can be adjusted to their optimal values. After 
a certain number of adaptations the filter weights reach 
their optimal values. For a nonstationary input, however, 
the signal characteristic is time-varying. The signal char- 
acteristic of the first N samples may be quite different 
from that of the next N samples and the filter weights may 
never reach their optimal values which are also time- 
varying. Therefore, the frequency-domain adaptive filter 
is not well suited for processing nonstationary signals with 
rapid characteristic changes. 
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