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Abstract

The electrogastrogram (EGG), a cutaneous measurement of gastric electrical activity, can be severely contaminated by endogenous
biological noise sources such as respiratory signal. Therefore it is important to establish effective artifact removal methods. In this
paper, a novel blind signal separation method with a flexible non-linearity is introduced and applied to extract the gastric slow
wave from multichannel EGGs. Simulation results show that our algorithm is able to separate a wide range of source signals,
including mixtures of Gaussian sources. On real data, we demonstrate the successful applications of our procedure to extract the
gastric slow wave from multichannel EGGs. As a result, the extracted clean gastric slow wave can be used to facilitate further
analysis, e.g. as a reference signal for multichannel adaptive enhancement of the EGG.  2001 IPEM. Published by Elsevier Science
Ltd. All rights reserved.
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1. Introduction

The electrogastrogram (EGG), a cutaneous measure-
ment of gastric myoelectrical activity, can be recorded
by placing electrodes on the abdominal skin. Its main
component, gastric slow wave or basic electrical rhythm,
has a frequency of 3 cycles/min (3 cpm) in healthy
humans. Due to its noninvasiveness and recent advances
in methodology, EGG has become an attractive tool for
diagnosis and treatment of gastric dysrhythmia, and for
electrophysiological studies of the stomach [1–4].

Unlike other surface electrophysiological measure-
ments such as electrocardiograph (ECG), however, the
clinical applications of this non-invasive method have
been limited [4–7]. One of the main problems with the
EGG is the poor quality of the recording, i.e., the weak-
ness of the real gastric signal and the strong interference
such as respiratory artifact and random noise. As a result,
direct visual analysis of the EGG is impossible. Several
methods have been designed and applied to improve the
quality of the EGG including bandpass filtering [8,9],
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fast Fourier transform [10,11], phase-lock filtering [12],
autoregressive modeling [13], adaptive filtering [14–16]
and neural networks [17]. More recently, a neural net-
work-based blind signal separation method [18] has
shown its efficiency for separation of the gastric signal
from noisy EGG recordings.

In this paper, a novel blind signal separation method
called adaptive independent component analysis (ICA)
is presented. In contrast to the previous algorithm [18],
our method substantially differs in two aspects. First,
instead of only using the fourth-order statistic or kurtosis
of the signals, we use all higher-order statistics of the
signals. Specifically, the separation is achieved under a
maximum likelihood framework by considering a simple
parametric model that is constructed with a family of
exponential power density functions. As a result, an
explicit algorithm for the adaptation of the non-linearity
to various marginal densities in ICA is derived. Thus,
the signal separation can be obtained without any precise
knowledge of their probability distribution.

Second, theoretical considerations as well as empirical
observations [19] have shown that applying fixed nonlin-
earity to all the source signals is limited to separating
sources with super-Gaussian distributions, i.e. sources
having sharply peaked probability density functions
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(pdf) with heavy tails. In reality, the source signals may
have various distributions such as super-Gaussian, Gaus-
sian and sub-Gaussian (negative kurtosis). The ICA with
fixed nonlinearity can therefore find independent signals
which are not the underlying sources. In other words,
the ICA may contrive to find statistically independent
signals at the cost of physically improbable solutions.
In our method, we place additional constraint by using
adaptive non-linearity function to match various possible
signal distributions, and may therefore be widely appli-
cable.

The aims of the present report are therefore twofold.
First to develop a general blind source separation method
under a maximum likelihood framework. Second to
apply the proposed method to extract the gastric slow
wave from multichannel EGGs. Computer simulations
are first conducted to illustrate that our technique is able
to capture some salient features of the underlying signal
distribution, enabling separation of mixture of Gaussian
sources which usually may not be separated by other
algorithms. Real world applications to multichannel
EGG signal separation are further demonstrated.

Preliminary reports of some of the results described
here were presented in Ref. [20].

2. Methods

2.1. The measurement of the EGG

The EGG data used in this study were obtained from
ten healthy subjects with body mass index of 18–37
kg/m2. The study protocol was approved by the Human
Subjects Committee at the University of Kansas Medical
Center, and written consent forms were obtained from
all subjects before the study. Gastric myoelectrical
activity was recorded in each subject for at least 30
minutes in the fasting state using a custom-made 4-chan-
nel device (Sandhill Scientific, Inc., Highlands Ranch,
CO). The device consisted of four identical amplifiers,
each with cut-off frequencies of 1.0 and 18.0 cpm. Prior
to the placement of electrodes, the abdominal surface
where the electrodes were to be positioned was shaved
if hairy, and cleaned with sandy skin-prep paste (Omini
Prep, Weave and Co., Aurora, CO) to reduce the imped-
ance. Six silver/silver chloride electrodes (VER MED,
Bellow Falls, VT) were placed on the abdominal skin
over the stomach, including four active electrodes 1–4,
one common reference electrode 0 and a ground elec-
trode. Electrode 3 was placed at the midpoint between
xiphoid process and navel, electrode 4, 4 cm to subject’s
right horizontal to electrodes 3; electrodes 2 and 1 were
positioned 45° upper left to electrode 3 with an interval
of 4 cm. Electrode 0 was placed 6–8 cm right horizontal
to electrode 1. Four channel EGG recordings were
derived by connecting each of the active electrodes to

the common reference electrode. On-line digitization
with a sampling frequency of 4 Hz was performed using
an analog-to-digital converter installed on the recorder
and digitized samples were stored on the recorder. The
subjects were in a supine position and instructed not to
talk and to remain as still as possible during the rec-
ording to avoid motion artifacts.

2.2. Adaptive ICA

Independent component analysis, which has enjoyed
recent theoretical [19,21–24] and experimental [18,25]
attention, refers to the recovery of a set of statistically
independent sources when only mixtures of these
sources with unknown coefficients are observed. Con-
sider unknown source signals si(t),i=,…,n which are
mutually independent, and can be gastric slow waves,
respiratory artifact and line noise etc. The mixture of
the sources of the sensor output x(t), multichannel EGG
recording in our case, can be described by

x(t)�As(t) (1)

where A�Rn×n is an unknown non-singular mixing
matrix, s(t)=[s1(t),…,sn(t)]T and x(t)=[x1(t),…,xn(t)]T.

Without knowing the source signals and the mixing
matrix, we want to recover the original signals from the
observations x(t) by the following linear transform:

u(t)�Wx(t)�WAs(t) (2)

where u(t)=[u1(t),…,un(t)]T is an estimate of the sources
and W�Rn×n is a separating matrix. The sources are
exactly recovered when W is the inverse of A, i.e. W=A-1.
After a possible permutation and scale change, we get
the performance matrix P,

P�WA (3)

so that if P is normalized and reordered a perfect separ-
ation leads to the identity matrix.

The basic idea of ICA in term of maximum likelihood
is to model the observation x as being generated from
latent variables s via a linear mapping A. The likelihood
of the data set in the given model is a function of the
model’s parameters. In the noiseless case, we can use a
parametric density estimator p̂(x;a) to find the parameter
vector a that minimizes the difference between the gen-
erative model p̂(x;a) and the observed distribution p(x).
Note that each vector a can be considered as a basis
vector of the matrix A so that p̂(x;a) is an estimate of
the observed vector p(x). An appropriate difference
between the estimate and the observation can be meas-
ured using the Kullback–Leibler (KL) divergence [24],
D:

D(p(x),p̂(x;a)��p(x)log
p(x)

p̂(x;a)
d(x) (4)
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�H(x)��p(x)logp̂(x;a)dx

where p(x) is the pdf of the observation x and p̂(x;a) is
a parametric estimate of the distribution p(x). The diver-
gence D(p(x), p̂(x;a)) is zero only if our estimate p̂(x;a)
matches the observation p(x). The normalized log-likeli-
hood of p̂(x;a) is therefore:

L�
1
T�

T

t�0

logp̂(xt;a) (5)

where T is the number of observations of x.
To obtain a maximum likelihood algorithm we find

the gradient of the log likelihood through applying a
stochastic gradient optimization. By introducing W=A-1

the log-likelihood for a single observation x is given
[24] by

logp(x|W)�log det W��
i

log pi(Wijxj) (6)

We then obtain the following formula,

∂D
∂W

��W−T�
p�i

pi

xT (7)

Setting the pi(ui) to the derivative of the activation
function of a logistic function, the algorithm reduces to
that described in [19]. Since the entropy of x, H(x) is
not dependent on W, maximizing the log likelihood is
minimizing the KL divergence:

∂L
∂W

��
∂D
∂W

�W�
p�i

pi

uTW (8)

In the above formula natural or relative gradient [21]
is used to enhance the computational efficiency.

When calculating the likelihood, an open question is
how to select the form of the activation function so that
it can match input’s pdf. In other words, this is how to
choose the marginal density functions, pi(ui), which in
practice, however, are not known. Here we consider a
family of exponential power density functions to be our
set of basis function:

pa(x)�c1exp(c2|x|a) (9)

where a is a positive constant, and c1, c2, are normaliz-
ation constants that ensure that pa(x) is a probability den-
sity of unit variance. The width of the distribution is
controlled by c2, and the weight of its tails is determined
by a. When a is set to different values, we obtain differ-
ent densities which range from super-Gaussian (positive
kurtosis) to sub-Gaussian (negative kurtosis). For

example, p is Gaussian when a=2. Thus the densities in
this family can be used as examples of different non-
Gaussian densities. This is why we choose this set of
the non-linearity function.

An alternative to the parametric density model above,
which may also be used for the separation of sub- and
super-Gaussian sources, can be defined by

p(x)�mj(x)�(1�m)cj(c(x�1)) (10)

where c is constant, and m is a parameter that takes all
the values in the interval 0�m�1, j(x) is the Gaussian
function. In fact, this is the case of mixtures of Gaussian,
which was discussed in [26]. This family includes asym-
metric densities of both negative and positive kurtosis.
Only the exponential power family of density functions
will be considered in this context. Similar derivation
should be obtained for Gaussian mixture densities.

The normalized log likelihood is

L�
1
T�

T

t�1

logpa(x)�logc1�c2|x|a (11)

To learn the parameter a, for example, we need the
derivative

dL
da

�c2|x|alog|x| (12)

To compute the parameters c1, c2, and a of L (see Eq.
(11)) and update W (see Eq. (8)), schemes based on the
natural gradient algorithm [21] and the quasi-Newton
method can be used. The simulation given below is
based on the quasi-Newton method, in which the pre-
cision required of the objective function of minimizing -
log L is set to 10-6 and the maximum number of iter-
ations is 100. Here the precision is defined as the absol-
ute difference between the objective function values of
two successive steps.

3. Results

In order to evaluate the performance of our approach,
both the computer simulation and EGG applications are
given below. First, we simulate it on computer using
synthetic source signals and random mixing matrix.
Second, we demonstrate the ability of the proposed
algorithm to extract the gastric slow wave from multi-
channel EGGs. All the experiments were performed
under MATLAB 5.2 for Linux.

3.1. Decomposition of simulated data

Six synthetic source signals, including both sub-Gaus-
sian, super-Gaussian and Gaussian, were generated and
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randomly mixed. It should be noted, unlike the source
signals used in other experiments that usually consist of
only one Gaussian [22,27], we use two Gaussian. The
first 100 values of the source signals, whose total length
was 2000 points, are depicted in Fig. 1. From top to
bottom of the left column, there are two sub-Gaussian,
two super-Gaussian and two Gaussian respectively. The
mixed signals are plotted in the middle column, and the
separation result is shown in the right column. We can
see from Fig. 1 that the separated signals (right column)
match the source ones (left column) quite well.

But one question still remains open — what should
the criteria be for two Gaussian signals to be considered
as separated. To address this question we calculate the
correlation coefficients between source signals and sep-
arated ones, which are given by the following matrix,

�
−0.004 0.038 −0.002 0.999 0.004 0.001

0.069 −0.028 −0.997 0.0004 0.001 0.0002

0.999 −0.007 0.046 0.003 −0.011 0.003

−0.030 −0.997 0.036 0.052 −0.037 0.010

−0.046 0.064 0.008 0.010 −0.997 0.007

0.007 −0.009 −0.003 −0.032 −0.016 −0.999

�
It can be seen from the above source correlation

matrix that the good separation is achieved by our
method.

The performance of the algorithm can also be exam-
ined in another way. Fig. 2 shows the performance
matrix P as indicated in Eq. (3). If the separation is per-

Fig. 1. Example of separation of independent source signals. (a) The sources from top to bottom consisting of two sub-Gaussian, two super-
Gaussian and two Gaussian respectively. (b) The set of random mixtures of source signals in (a). (c) Estimates of the source signals.

fect, the result will be a ridge along the diagonal with
all off-diagonal elements close to zero. Indeed, P is
approximately the identity matrix which indicates nearly
perfect separation.

3.2. Applications to EGG data

Fig. 3(a) shows 10-min 2-channel EGG data from a
healthy human subject. The separation by the proposed
method is shown in Fig. 3(b), from which we can see
the noise-free gastric slow wave signal (channel 1) is
well separated from noise contaminations, such as res-
piratory and random noise.

A further application example is illustrated in Fig. 4,
where 10-min three-channel EGG recordings collected
from a healthy subject are plotted in Fig. 4(a), the separ-
ation results are shown in Fig. 4(b). Comparing the orig-
inal recordings in Fig. 4(a) with the separated signals in
Fig. 4(b), we can see that the gastric slow wave with
about 3 cpm (channel 1 in Fig. 4(b)) is clearly extracted,
whereas the respiratory and random noise are concen-
trated on the channel 2 and 3.

To verify the extracted gastric slow wave is indeed
the true component of gastric myoelectric activity, we
performed cross-spectral density estimation of the
extracted EGG and one of the EGG recordings using
Welch’s averaged periodogram method [28]. The result
shows that these two signals are well correlated at the
peak of 3 cpm, which is illustrated in Fig. 5. This cross-
spectral analysis confirmed that our technique is able to
extract the physically realistic signals.
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Fig. 2. Performance matrix for the separation of six sources. A ridge along the diagonal with all off-diagonal elements close to zero indicates a
good separation.

Fig. 3. Application to 2-channel EGG data. (a) Two channels raw EGG recordings. (b) Two separated signals. Channel 1 corresponds to 3 cpm
gastric slow wave, channel 2 is noise contaminations.

4. Discussion and conclusions

A novel blind signal separation method with a flexible
non-linearity is presented and successfully applied to
extract the gastric slow wave from multichannel EGGs.
A key feature of our method is the addition of prior
knowledge in the form of adaptive non-linearity in order
to match various possible signal distributions which
leads to extracting physically meaningful signals. The
proposed method was initially tested in a series of com-
puter simulations, showing very good performance in the
separation of signals from their linear mixtures. In
experimental data obtained from human subjects, the

method was able to extract gastric slow wave from
multichannel EGGs. As a consequence, the extracted
clean gastric slow wave can be used as a reference signal
for multichannel adaptive enhancement of the EGG.

This technique seems to be an improvement to the
traditional artifact canceling methods. Adaptive filtering
technique [14–16] in either time domain or transform
domain has been shown to improve the quality of the
EGG or to extract relevant information from the EGG.
An inherent weakness of this method, however, is requir-
ing a reference signal that is the comprehensive signal
of the various artifacts to be removed. Also, the proposed
method is quite different from the filtering in the fre-
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Fig. 4. Application to 3-channel EGG data. (a) Original three channels EGG recordings. (b) Three components extracted from raw EGGs. Channel
1 corresponds to 3 cpm gastric slow wave.

Fig. 5. The cross-spectrum of the extracted gastric slow wave and the first channel of original EGG recordings. We can see these two signals
are well correlated at the peak of 3 cpm, which confirmed that our technique is able to extract the physically realistic signal.

quency domain that is in general a compromise between
preserving the signal and rejecting the noise. Particularly
in case the frequency of real gastric signal can be very
close to or maybe even overlaps with that of the respir-
atory artifact during some abnormal activities of the sto-
mach, frequency domain filtering will fail to remove this
kind of artifact. The proposed ICA method does not have
such limitations, therefore is more promising and prag-
matic in real world applications.

It should be noted that the basic assumption made on
the data used in the proposed method is that the EGG is

a linear mixtures of a number of temporally independent
sources such as gastric slow wave, small bowel signal,
respiration and random noise, which is generally com-
patible with EGG studies [2]. In most cases this indepen-
dence is verified due to the differences in physiological
origins of those signals. However it may fail to remove
motion artifacts from the EGG because the occurrence
of motion artifacts is discontinuous. Apart from this, the
algorithm implicitly requires the number of channels to
be the same or greater than the number of sources.
Despite these limitations, the algorithm presented here
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should be applicable to other biomedical signals where
both sub-Gaussian and super-Gaussian sources need to
be separated without additional prior knowledge of their
statistical properties.

In summary, we have formulated ICA within the
framework of maximum likelihood, in which a novel
blind signal separation method with a flexible non-lin-
earity is developed. Extensive computer simulations
show our approach allows to separate a wide variety of
sources ranging from sub-Gaussian to super-Gaussian,
and even the mixture of Gaussian provided only that
they have distinct spectra. The success of our procedure
is further demonstrated on real world applications to
EGG signal separation. We believe that the successful
application of the ICA method shown in this paper will
facilitate research on the EGG.
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